
PRIVATE COMPUTING
THE TRUSTED DIGITAL ASSISTANT

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,
prof. dr. F.A. van Vught,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op vrijdag 28 juni 2002 te 13.15 uur.

door
Tage Stabell-Kulø

geboren op 24 januari 1963
te Kristiansund, Noorwegen

Het proefschrift is goedgekeurd door
prof. dr. S.J. Mullender, promotor.

ii

Private Computing

The Trusted Digital Assistant

Tage Stabell-Kulø

Ph. D. Dissertation

University of Twente

This dissertation was typeset with LATEX in Charter and Euler, with sym-
bols from AMS. The simple figures were drawn, then scanned at 1200
dpi, and converted to JPG with GIMP. The complicated once were pro-
grammed in METAPOST. The cover was drawn by Marianne Kulø. The
dissertation was in its entirety written and typeset using NetBSD.

Copyright c© Tage Stabell-Kulø 2002.

ISBN 90-365-1762-1

PrintPartners Ipskamp B.V.

Postbus 333

7500 AH Enschede

Nederland

ii

Preface

Over the last 10 years, I have continously been working on projects re-
lated to private computing. The projects to which I have been affiliated
have varied in focus, in size and in scope. This dissertation reports from
the various projects, and thus represents a decade of research.

Over the years, I have had the pleasure of working with quite a few
people. Fortunately, not all of them have let me be solely in control
of our joint projects. In fact, some have put up quite some resistance
when I have tried to lead the project in the direction I believed was
best. Today, I believe this stubborn resistance benefited not only the
projects per se, but probably also, in the end, this dissertation. The price
to pay for cooperation is that I am not the sole author of every single
publication this dissertaion is based on. However, I am the first author
on all but one. On that last one, the authours are in alphabetic order.
Thus, my claim is that this dissertation reports from my contributions.

My ambition has been to present only work that has been validated
by peer review. To that end, at the very beginning of each chapter
there is a section identifying the underlying publication(s). All chap-
ters, except those in the introduction (Chapters 1 – 3) and Chapter 7,
are based on articles that has been published. A few of them has simply
been printed, but most have been published.

Because I report from a decade of continous work, some of the re-
sults presented here are quite dated. However, at the time they were
published, they were not.

iii

iv

Acknowledgements

Beste Sape,
Op een paar weken na is het nu tien jaar geleden dat je mij uit-

nodigde om te beginnen aan mijn promotie. Nu, na een decenium
met zijsporen, twijfel, verontschuldigingen, en onzekerheid moet ik
met verbazing constateren dat je gelijk hebt gekregen. Of, met an-
dere woorden: Je hebt meer vertrouwen in mij gehad dan ikzelf, en dat
verbaasd me.

Ik hoop dat het geduld dat jij door de jaren heen met mij hebt gehad,
mij zal helpen mijn geduld te bewaren als ik zit te wachten tot mijn
studenten terugkomen van hun zijsporen. Ook als de wachttijd oploopt
tot een jaar of tien.

Laat ons vaker dineren samen!

Molto tempo fa, a Enschede, feci il mio primo incontro con gli Ital-
iani. Mentre parlavamo della vita, dell’universo e di tutto il resto nella
“Hall C”, intravidi uno stile di vita diverso dal mio. Mi chiesi come
poteva essere vivere in Italia, quando potevo descrivere l’Olanda come
un “eldorado burocratico”. Iniziai a capire durante una cena a San
Giuliano Terme: ricordo vividamente che avevamo dato appuntamento
alla miglior tagliata e, come tocco finale, alla grappa più pregiata. Le
fondamenta di questa dissertazione furono gettate mentre stavo man-
giando pasta a “The Monsters”. Le fondamenta del mio futuro furono
gettate mentre stavo mangiando pasta a “La Casa dei Norvegesi”. Ne
sono grato.

v

Det er mange som mener de har betalt en høy pris for at denne avhan-
dlingen skulle bli ferdig, nesten ti år efter at den ble påbegynt. Av dem
som med rette kan fremme krav om tilbakebetaling er naturligvis alle
de andre deltagerne i de prosjektene jeg har fått være med i; det er
beklageligvis for mange til å ramse opp alle. Blant dem som nok ønsker
betaling er mange ansatte og studenter ved Institutt for Informatikk
som gjennom de siste 17 årene i praksis, mer eller mindre frivillig, har
lagt forholdene til rette (og betalt prisen) for mine sprell.

Fremst i rekken av kreditorer står helt åpenbart dem jeg har arbei-
det sammen med: Arne [66, 67, 68, 126, 69], Feico [124, 39], Gi-
anluca [126], Gunnar [45], Per Harald [96, 123, 95], Ronny [123]
og Terje [45, 46, 125, 124]; navnene er sortert alfabetisk, men de
burde muligens vært sortert efter antall referanser, antall krangler, an-
tall grappa, antall utkjørte kilometer, eller noe. Uansett, med seg har de
studenter og ansatte som har vært involvert i PASTA på en aller annen
måte. I tillegg kommer Anders som har unngått å skrive sammen med
meg så langt, men som nok ikke slipper unna; han har altså bare betalt
og ikke fått noe igjen.

Uansett hva jeg måtte mene om min egen fortreffelighet, så er det i
bunn og grunn Hustruen som har gjort denne avhandlingen både mulig
og nødvendig; hun har dermed fått som fortjent. Da stiller det seg
anderledes med Marine, som gjennom mesteparten av oppveksten har
hatt avhandlingen svevende over seg som en syvende far i huset. Jeg
håper det ikke skal skje igjen.

Den som utviste mest tålmodighet men samtidig var mest utålmodig
var likevel Farmor; jeg tror du hadde likt å se resultatet. Avhandlingen
dedikeres til deg.

Financial support has been received from The University of Twente,
The Netherlands, The University of Tromsø, Norway, EU through the
BROADCAST and PEGASUS projects, and the Research Council of Norway
through the GDD, ARCTIC BEANS and PESTO projects.

vi

Contents

1 Introduction 1
1.1 Problem statement . 9
1.2 Methodology . 10
1.3 Outline and main results 10
1.4 Notation . 14
1.5 The terms security and privacy 16

2 Cryptography 19
2.1 Introduction . 19
2.2 Shared-Key Cryptography 21
2.3 Public Key Cryptography 24

2.3.1 One-Way Functions 24
2.3.2 RSA . 26
2.3.3 Elliptical Curve Cryptography 27
2.3.4 Hash function . 28
2.3.5 Digital Signatures 29
2.3.6 Conclusions . 30

2.4 Putting it all together: PGP 30
2.5 Smartcards . 32
2.6 Conclusion . 33

3 Reasoning about Security in Distributed Systems 35
3.1 Logics for Authentication 37

3.1.1 The BAN logic 38
3.1.2 The GNY logic 40
3.1.3 The Syverson–van Oorschot logic 42

vii

3.2 Delegation . 43
3.3 Principals . 45
3.4 Infrastructure . 46
3.5 Conclusion . 48

4 The Open-End Argument 51
4.1 Introduction . 51
4.2 Open-End Argument . 51
4.3 Discussion . 56
4.4 Conclusion . 57

5 File Repository 59
5.1 Overview . 60
5.2 Related Work . 64

5.2.1 Coda . 65
5.2.2 Secure File System 66
5.2.3 Authentication 66
5.2.4 Taos . 67

5.3 Design . 67
5.3.1 Storage and Identification 68
5.3.2 Communication 68
5.3.3 Policies . 69
5.3.4 Replication Policy 69
5.3.5 Consistency . 70
5.3.6 Access Control Policy 71
5.3.7 Local and Global Naming 74

5.4 Discussion . 74
5.5 Conclusions . 76

6 Intent and ability 79
6.1 Introduction . 79
6.2 Closing a Session . 80

6.2.1 Removing a file 81
6.2.2 Analyzing dependencies 84
6.2.3 Examples . 86
6.2.4 Discussion . 92

6.3 Conclusion . 94

viii

7 Offline Delegation 95
7.1 Introduction . 96
7.2 Design requirements . 97
7.3 Certificate creation . 98
7.4 Implementation details 99
7.5 Conclusions . 103

8 Smartcard versus PDA 105
8.1 Digital Signatures . 106

8.1.1 Overview . 108
8.1.2 The One-Time Pad 113
8.1.3 Analysis . 115
8.1.4 Implementation details 125
8.1.5 Related work . 128
8.1.6 Discussion . 129

8.2 Augmenting smartcards 129
8.2.1 Secure Channels to and from a smartcard 131
8.2.2 General characteristics 131
8.2.3 Related work . 134
8.2.4 Discussion . 136

8.3 Conclusions . 137

9 Conclusions 139

Bibliography 144

Appendix A: One-Time Pad 161

Appendix B: SvO axioms 163

ix

x

Chapter 1

Introduction

“Private information is practically the source of every large, modern
fortune.”

Oscar Wilde, “An ideal husband”, act two.

Computers are becoming omnipresent and ever more information is
processed electronically; our times have long been described as one
with “ubiquitous computing” [142]. Computers, small and “invisible”
as well as large and powerful will be at our disposal. One effect will be
that information stemming from all parts of life, from private as well
as professional activities, is processed, stored, updated, correlated and
used for a variety of purposes. Some of these might very well be unde-
sirable (from a user’s point of view, that is). For example: a provider of
mobile telephone services knows the distance between its base stations,
and the time customers use to travel between them. Based on this in-
formation, the provider can deduce how fast customers drive. This
information might be beneficial to insurance companies, which could
adjust premiums according to their customers’ driving style. Or, as has
become customary in some countries, providers are subpoenaed to pro-
vide information on the whereabouts of the mobile phones belonging to
customers. The opposite is also taking place: In a high-profile criminal
case in Norway1, one of the accused claimed to have an alibi because

1In the so called “Orderud case”, a married couple and their adult daughter were
murdered. Their son, his wife, her half sister, and the half sister’s boyfriend were later
convicted of assisting in the murder; at the time of writing an appeal is pending.

1

2 Introduction

data from the provider showed that her phone had not been at the scene
of the crime. There are countless other possibilities of such (mis)use of
information. As long as there is profit to be gained, such opportunities
must be expected to be exploited. Those who are worried about intru-
sion into their private sphere must acquire the expertise necessary to
protect themselves; switching off the mobile phone while speeding is
an example. Refraining from speculating on the likelihood of a merger
between an insurance company and a provider of mobile telephony, we
assert that there are many such constellations where providers of differ-
ent services might blend their services to gain profit in new or existing
markets. A question related to system design arises from this: How
should systems be constructed to enable users to muster enough infor-
mation about the system to fend of attacks on their privacy? Part of
such an investigation is related to user interfaces; how can and should
information about the system be presented to the user? We believe
users wants to participate in the decision making, being in the decision
loop as it were.

In addition to a vast array of entirely new services and products
made possible by private computers and networking in concert, some
old concepts will be transformed to a new form. For example, it is likely
that in the future a large percentage of private communication will be
electronic, and the traditional envelope will be replaced by the crypto-
lope2. A cryptolope is a cryptographic envelope, as it were, designed to
provide a countermeasure to the ease with which (electronic) data can
be gathered, searched and analyzed. The cryptolope is harder to open
than the envelope but this is a result of the hundreds of years that sepa-
rate the two inventions. While contemporary envelopes provide (some)
privacy by their sheer number, cryptolopes achieves the same goal by
ensuring that it requires a substantial effort to gain access to the con-
tent. Cryptolopes will probably become as common as envelopes, but
an important problem must be solved before they can be put to their
full potential: How, where, and by whom (what) should cryptolopes be
“sealed”? Obviously, the entity that seals a cryptolope must be trusted
not to “peek inside”, or, if it has to, not to leak information about the
contents. Restraining a system component from “peeking” necessitates
examination of the design of the system, as well as paying close atten-

2The word “cryptolope” is a trademark owned by IBM, but nevertheless used here
to convey the amalgam of new and old technology. The IBM Cryptolope Technology
is an ingredient in IBM e-Business and Content Management Solutions.

3

Figure 1.1: Non-intrusive device to capture all keystrokes.

tion to implementation issues. Doing so seems to be an aspect of the
question posed above: How should systems be constructed, in order to
make it possible for users to protect themselves? Essentially the same
question can be posed by asking if there are components that should
not be used in a system aspiring to offer security in some form.

As an example, consider a device known as “Key Katcher”. The
manufacturer3 describes the product as follows:

This is a device that can be connected to a keyboard to
record all keystrokes. It has a changeable password, key-
word search, enable/disable option, and stores URLs. Records
more than 65,000 keystrokes and does not require any soft-
ware. Monitor unauthorized access to your computer or
your network. Use it to troubleshoot or make fixes by trac-
ing back through a users command sequence.

Key Katcher plugs in between your keyboard and your com-
puter. A micro-controller interprets the data, and stores in-

3Allen Concepts, Inc., Chandler, AZ, USA. The “Key Katcher” costs in the order of
US$ 80.

4 Introduction

formation in the non-volatile memory (which retains the in-
formation even when there is a loss of power.) This means
that the Key Katcher device can be unplugged, and the in-
formation will not be lost.

To access the recorded data, you simply type your password
in a text editor and the Key Katcher comes to life. A menu is
displayed with options to erase data, view data, search data
for keywords, change password, or disable the device.

The device can be seen in Figure 1.1. It should not come as a surprise
that such devices exists, and that they are readily available.

Analogous to the privacy enjoyed at home, users also need a pri-
vate place in distributed systems where they retreat to when they want;
in order to read or write private email, for example. Or, more to the
point, to encrypt and decrypt. Today, most users are at home when
they engage in private exchanges of email. In such a setting, the pri-
vate machine provides all the flexibility and power one could possibly
desire. Both regarding processing power in a trusted environment, and
for storage of secrets. However, a growing number of users compute
while on the move. What they need is a machine that can act as the
trusted haven they have at home, but a portable one.

The computational model in which private machines play a central
rôle will be denoted private computing to differentiate it from personal
computing. The latter term is derived from to the term “personal com-
puter” which is a desktop machine.

We will name this the Trusted Digital Assistant (TDA). Two possible
sanctuaries spring to mind: The palm-top sized PDA and the smartcard.

– A contemporary Personal Digital Assistant (PDA) is a palm-top sized,
privately owned machine. The accompanying software is geared
towards private needs (diary and phone lists) rather than business
(spreadsheets).

In particular, the blend of attributes implies that while the per-
sonal computer is there for you when you need it, the private
computer is not there for anybody else. It is impossible to give a
rigorous definition of which characteristics a computer must have
in order to be a PDA. In general it is the combination of software
focused on private tasks, and hardware focused on portability and
ease of use.

5

Also, for a PDA to be as useful as we envision, the machine should
be portable. If a private machine is to be a sanctuary for sensitive
data and computations, having the machine at hand is paramount.
In addition, most machines require that physical access to them is
restricted if they are to remain secure.

PDAs are available from a wide spectrum of possible solutions. In
any case, PDAs are small, and being small implies that they are
“meagre”: they have few resources, low bandwidth communica-
tion, low display resolution, small (if any) keyboard, and so on.
As an example, a popular contemporary PDA, the PalmPilot from
3Com, has a version of the well known Motorola 68000 proces-
sor (Dragonball), a display resolution of a mere 160 X 160 pixels,
and no keyboard at all (it utilizes handwriting recognition and
converts strokes into characters and commands). Even a simple
task, such as providing a password, is a nuisance because stroking
is considerably slower than typing. However, at only 120 grams
and 114 X 77 mm it does fit nicely in a shirt pocket.

– A properly manufactured smartcard can, for all practical purposes,
be considered a tamperproof device where secrets can be stored.
The typical secret is an encryption key. The general idea is that
a digital signature made by the card should be more trustworthy
then one made with a key stored on some other medium where
the key is accessible to the user, and others.

From a Turing-machine point of view, smartcards are obviously
“real” computers, complete with communication channels for in-
put and output [139]. The situation is somewhat murkier seen
from a user’s point of view. Because the smartcard does not have
any communication channels that are directly accessible to hu-
mans (such as a display), even though they are “real” computers
it is not obvious how they can be applied in that rôle. If we main-
tain the notion that a private machine is one that is unavailable
to others, a smartcard is probably as far as one can come. It is
off-line most of the time, and has very limited support for sharing
of resources. Storing one’s keys on a card will protect them prop-
erly, but we note that the card is used as a storage device rather
than as a computer in the proper meaning.

There are important obstacles to use a smartcard as a safe haven

6 Introduction

for private data and computations The crux of the matter is: When
the card is inserted into a card reader, how can the user know
what is sent to the card for processing? Even though the card is
a computer, the areas where it can be trusted is not sufficient to
build a private computing sphere.

The desire to include TDAs in distributed systems raises two issues. First
there is the question of what constitutes a TDA, how can such a machine
be built, what functionality must it have, and so on. Second, quite a
few engineering challenges arise: how to find a balance between the
services users would like to have access to, and the ones that can be
reasonably supported on small devices, while, at the same time, keep-
ing an eye on privacy. The investigation of these two issues is the topic
of this dissertation.

In the context of private computing, security in general and privacy
in particular is a personal matter. We believe the user in some cases will
have a desire to withhold information from the system he is using, while
using it. The example with mobile phones and speeding highlights this
aspect. Furthermore, security has traditionally revolved around the sys-
tems’ integrity just as much as around the users’ desire for privacy. As
an example, consider a traditional Unix system. When Unix is observed
from the users’ point of view, it is impossible for the user to construct
any type credentials that will persuade the system to let an outsider
obtain access to any resources (except by giving the password away).
In particular, if a Unix user is off-line, it is impossible to grant access
to any data of his (short of surrendering his password). This is in fact
true both inside and outside of Unix; that is, it is impossible to con-
struct such credentials regardless of whether the user is logged onto
the system or not. Notice that we are not discussing whether a user can
give his data away (by sending an email or by writing a program that
answers queries), or give other users at the same system access to his
data, but rather that the system is “closed” to outsiders.

Unix is a centralized system and has not been designed to support
users that are off-line, and it would be unreasonable to claim that this
is a fault in the design. But this is true also for many distributed sys-
tems. Take for example any system where authentication is based on
Kerberos [127]. The original design is becoming quite dated, but the
design represents in a sense an extreme point on a scale where pri-
vate computing—when it comes to trust and control of resources and
information—represents the other extreme. Also in regard to Kerberos,

7

it is impossible to create credentials outside the realm of Kerberos that
are valid within. As with Unix, it is impossible to delegate authority to
an outsider not recognized (or acknowledged) by the system. In other
words, users have not been given any means to delegate access rights
to their own objects.

Such a regime is enforceable only when the sole means for users
to access the system is through channels (normally workstations) con-
trolled by the administrative body that controls the system itself. Both
Unix and Kerberos force users to trust the workstation (by giving it their
password). While we might label Unix as a traditional, centralized sys-
tem, we label Kerberos as a building block in a distributed system with
centralized control. We believe none of these models are well suited for
distributed systems with private machines.

Some technologies are particularly prone to lay the foundations of
centralized design in distributed systems; biometrics is one of them.
The prospects of carrying definite means of authentication at all times
is obviously convenient. However, there are quite a few negative as-
pects to this. First and foremost is that biometric information can not
be changed. That is, I can change my password and delete a private
key, but I can not change my iris. The result is that it is hard, if not
impossible, to end a relationship with a service provider. Furthermore,
basing authentication on biometrics marginalizes the user to a degree
unseen in other technologies. An introduction to the field can be found
in [10, Chap. 13].

In contrast to the design of these two centralized systems, consider
a user armed with a TDA, and assume that he trusts it. Because he has
a machine he trusts, he is able to perform calculations, and he can,
for example, demand two-way authentication as part of the login pro-
cess; when the user identifies himself, the system should do likewise.
Furthermore, with a TDA, a user should be able to create delegation
certificates without interacting with the system where the certificates
are to be used. We believe that in systems supporting private com-
puting, it is reasonable to expect that the user, not the system, should
decide which credentials that are deemed “good enough” for access to
the user’s resources. However, when users have the possibility to de-
cide for each and every transaction which credentials to delegate to, it
is also necessary that the monitor is able to interpret the intentions, and
verify that correct and valid credentials are presented. Such a regime
might be called an “on the fly” security policy. Quite some machinery

8 Introduction

is probably necessary to realize such policies; an infrastructure for dis-
similation and validation of public keys and delegation certificates just
for starters. In addition, we believe that users equipped with TDAs will
interact with many distributed systems, all of which might be under
different administrative domains. A single, global, security policy is not
possible, and probably not even desirable.

When users are given the possibility to construct their own certifi-
cates, a particular aspect of credentials must be considered: The quality.
We believe that, in the private sphere, users will not only create their
own credentials and value them highly, users will also value different
sources differently. That is, when there are multiple sources for creden-
tials, users might deem their “quality” different. The quality of creden-
tials are considered only in the cases where the credential is (crypto-
graphically) valid; the quality is an attribute augmented to the creden-
tials by the user, not by the system. For example, to access a document
created as part of a professional relationship, a user might choose to ac-
cept credentials originating by an administrative body (their common
employer). It is reasonable also to expect that in order to grant access
to a private letter, a different set of credentials might be requested, even
if the requestor is the same one. The quality of credentials is a piece
of information that obviously can not be determined by a machine un-
less it is already mapped down to one from a set of discrete values by
the user. Adding quality—in addition to validity—to the attributes of
credentials poses yet another challenge for system designers.

A TDA is not, by no means, a panacea in privacy matters, but we
believe that users will trust their TDA more than they do machines not
under their (physical) control. At the very least, we believe that users
will find it less hard to trust machines under their physical control then
to trust machines controlled by others. Furthermore, we also believe
there are all reasons to assume that a single-user machine under the
users’ physical control is more trustworthy that other machines that
might be available.

Because users neither can encrypt nor decrypt without assistance,
it is necessary to trust some part(s) of a system in order to interact
securely with others. The part(s) one chooses to trust becomes the
Trusted Computing Base, or just TCB [35]. A somewhat imprecise de-
scription of what a TCB is can be those components that can betray the
user, without the user noticing before it is too late [85]. It is impor-
tant to know exactly what constitutes the TCB, as elements outside of

1.1 Problem statement 9

it normally can not inflict as much harm on the user as those elements
inside.

On one hand, having in the TCB a private computer that is trusted
not only for a limited domain (such as file servers are, for example),
but rather in general, enables users to firmly place themselves in the
center of their own computing environment, delegating authority over
their resources on a per-use manner and interact securely with service
providers. On the other hand, if a private machine is to be truly useful,
it must be so small that it can be brought along conveniently, which
limits its applicability. Taken together, we believe that the net effect
is one where the TCB will vary in both time and space. To meet one
challenge the user will trust some (remote) server to act on his behalf,
to meet another a different set of servers are relied upon. This leads
us to take a closer look at how to design and implement a variable-size
TCB. That is, one that differ in size depending on the context, but where
a TDA is a central element.

1.1 Problem statement

To summarize the introduction, we have claimed the following:

– Private, PDA-style of computers will be commonplace; we have
not made any decisive claims relating to the technology needed
to create a TDA.

– Private computing will pose a shift in the security and privacy
concerns of users.

After asserting that they are (or will become) true, we have observed
that systems’ design and implementation will face new challenges due
to new types of demands and priorities. We are led to pose the follow-
ing questions:

1. How does the integration of private machines influence the design
of distributed systems related to security and privacy?

2. How can users with private, trusted devices be included in the
decision loop when it comes to sharing, delegation, authorization,
and so on?

This dissertation will revolve around these questions and shed light on
them from different angles.

10 Introduction

1.2 Methodology

In general, security can not be analyzed by running an implementation
and harvesting the results, as is possible with performance, for example.
The reason is simple: The actual security of a system hinges not only on
the implementation, but also on its design; security is guarding against
the unknown. The best we can hope for is to analyze subsets of the
system. In particular, we can analyse (parts of) the design in order to
gain a better understanding of the assumptions needed for the design
to be sound; a design that is sound is both secure and useful. Such
understanding will pave the way for a more secure implementation.
The issues that we care to analyse are derived from the nature of the
object we study: security in a distributed system.

The questions we have posted can in some sense be answered by
implementing a system that demonstrates that some aspect can be effi-
ciently designed and implemented. However, rather than labor to enu-
merate them, borders will be drawn, both theoretical and practical,
within which a viable system must be designed. Protocols to be used
between the machines are analyzed by means of a logic of authenti-
cation, and trust relations between principals by means of a theory of
authorization and delegation.

Evaluation by means of implementation can rightly be criticized for
only providing a single point in a large design space. However, the
lack of resources experienced by PDAs places strict limits on what can
be realized, and an implementation will serve as an proof of concept.
Also, an implementation forces us to a throughout study of the inter-
action between different components in a system. This can yield an
understanding not available by other means.

1.3 Outline and main results

This dissertation deals with security in general and privacy in particular,
in systems where private machines are used to represent their owners.

The following is an outline of the text.

Chapters 2 and 3: Security is made possible by, among other things,
the application of encryption. To ensure that this dissertation is
“self contained” in this respect, these two chapters very briefly
present cryptography and tools to analyze aspects of security in

1.3 Outline and main results 11

distributed systems. Cryptographic tools make it possible to build
secure systems, while the analytical tools make it possible to study
system components; protocols in particular. Some themes that are
discussed are shared- and public key encryption, hashes, digital
signatures and infrastructure to distribute certificates of different
types. There is little focus on the inner workings of the crypto-
graphic tools that are used, and Chapter 2 contains a detailed
description of the assumptions made about them. Chapter 3 is
concerned with logics for the analysis of protocols and a theory
for authentication and delegation.

Chapter 4: Designing systems to encompass private machines requires
a different approach to central issues such as control and man-
agement. It will be argued that systems encompassing private
machines give rise to new semantics to well known terms such as
trust and conflicting updates. We claim that this is an aspect of pri-
vate computing in general. A design strategy, named the open-end
argument, is presented and discussed.

Chapter 5: In order to argue that the open-end argument is viable we
will present a distributed system named File Repository (FR). FR

offers distributed storage of files, without being a traditional dis-
tributed file system, while having a user-centric design. FR has
been designed with with private computing in mind, and to that
end it offers to the user mechanisms to control his own security
regime.

A per-user security regime requires the system to provide mecha-
nisms for each and every user to decide which, if any, third parties
he trusts, which (types of) credentials he is willing to accept for
authentication, and the set of servers he trusts to perform tasks
(replication, storage, authentication) on his behalf. In addition, a
lax security regime of one user should not jeopardize the privacy
of others.

FR has served as our research vehicle, and the system is in a con-
stant state of flux. We present the current design, which is un-
der implementation. The relevance of FR in this context is that it
shows that in private computing, striving for transparency is not
a viable strategy. This reflects upon security in that transparency
is not a viable strategy there either.

12 Introduction

Chapter 6: The discussion in Chapter 3 highlights the necessity of mak-
ing precise (and correct!) assumptions about participants, their
intentions and abilities. Although precise and correct assump-
tions underpin any reasoning on the security of a system, actually
picking the right assumptions is hard. For example, one should
not assume without careful consideration that a private key is in-
deed kept secret and used with prudence. We discuss two dif-
ferent settings where realizing (e.g. implementing) assumptions
is surprisingly hard. An aspect of assumptions is discussed in this
chapter: the gap between intent and ability. It is our view that this
gap is an abyss and the security of systems which encompass pri-
vate computers must be seen in this light. In essence, this chapter
is concerned with pure engineering aspects of designing systems
with security in mind. Both at the operating system level, and au-
thentication protocol level. First, the task of deleting a file (and
its contents) is scrutinized. It is demonstrated how difficult even
this seemingly simple task is, and the example is used to elabo-
rate on the semantics of good encryption keys and the problems
arising from having transparency as a design goal.

Regarding protocols, the focus is on a particular disturbing sce-
nario: What happens when a user loses his trust in some formerly
trusted principal? In general, the situation can be described as
follows: if a user tomorrow loses trust in someone he trusts today,
is he certain that his former trust cannot be misused?

In centralized systems the problem has a different flavor. There,
a user who loses trust in the system simply refrains from using
it. The (owner of the) system can claim that the user continues
to use it for as long as he wishes, and there is little the user can
do to prevent it. On the other hand, in most cases the associa-
tion between the user and the system is rather weak, and the fact
that the system can send messages it claims originate from the
user is fairly obvious. In distributed systems with autonomous
participants, one would expect that the separation between sys-
tems obliterated any such dependency. Users represented by a
machine they trust should be able to erect a wall separating them-
selves from any system they use; especially in such a way that any
future misuse can be avoided.

Protocols are scrutinized with this in mind, and the findings are

1.3 Outline and main results 13

described: some protocols are not secure in this respect. Based on
this observation, a method is developed to analyse protocols for
such defects. It is shown that the defect is intrinsic to shared-key
cryptography, but introducing public-key cryptography does not
automatically solve the problem. It is shown that the design per
se might render valid assumptions incorrect. In particular, regard-
less of how careful a user might be, protocols designed to pro-
tect his privacy implicitly assume the perpetual honesty of other
parties; an assumption one should not make without careful con-
sideration. Shared key cryptography is an attractive option for
performance reasons, and designers should beware of the prob-
lems associated with them.

Chapters 4 and 5 are concerned with how one goes about de-
signing systems where private computers are integrated in the
design. The claim is that following the open-end argument is a
valid and viable design strategy, and that certain constructs and
designs should be avoided.

Chapter 7: FR has been designed to be a cog in a private comput-
ing regime. Private computing is not constrained by the systems
that supports users in the same way as more traditional designs.
With the potential of becoming a central building block in private
computing, FR must support “on the fly” security policies. The
problem is amplified by our desire to use contemporary TDAs, not
equipped with the computational power it turns out that is needed
to achieve our goals; integrating smartacrds also pose some in-
teresting issues. Uncommon signature schemes are necessary to
facilitate such functionality.

The implementation is discussed in some detail. The main contri-
bution is an exploration of off-line delegation.

Chapter 8: A principal is a participant in distributed systems capable
of doing “more” than just sending messages. Principals must be
able to make statements; a statement is data accompanied by a
digital signature that vouches for its origin. It is the signature
that sets statements aside from other strings claiming to originate
from the user. Public key technology is but one means to achieve
signatures.

This chapter is concerned with what constitutes a TDA. It is fairly

14 Introduction

obvious that there is a smooth transition between a large palm-top
and a small laptop (and from there to more powerful computers).
A more interesting case is the transition between a small palm-
top and the smartcard. To highlight the functionality required by
a TDA, we discuss how digital signatures can be created by means
of a smartcard. It will be shown that (semi) trusted third-parties,
complex protocols and a fair amount of user involvent is neces-
sary to achieve what can be done quite easily with a TDA. It is also
shown that the resulting signatures are less strong (more assump-
tions must be accepted). An exploration into the assumptions that
are made reveals that TDAs provide the crucial functionality lack-
ing in a smartcard: a secure bi-directional channel between the
user and the card. The main result is a method to securely sign a
message by means of a smartcard in a hostile environment.

To verify that the method is usable, an implementation has been
conducted; some implementation details are discussed. The im-
plementation demonstrates that the method we have devised in-
deed can be utilized.

Exploring further the border between a smartcard and the im-
plications of the term TDA, it seems prudent to ask: with what
does a smartcard need to be augmented in order to be able to be
the foundations of a private computing sphere? The only aspect
of a TDA that is not shared by a smartcard is the secure channel
between the machine and its user. Although it is obvious in prin-
ciple that a keyboard and a display must be added to the card, a
question of implementation remains. A novel implementation is
presented.

The contribution is that light is shed on the area between the
contemporary TDA on one hand and the standardized smartcard
on the other. Implicitly, what constitutes a TDA is also discussed.

Chapter 9: Conclusions are drawn from the investigations and their
relevance discussed.

1.4 Notation

The following notation will be used; it is adopted (with a few modifica-
tions) from [136]. As will become evident later, the notation captures

1.4 Notation 15

many of the assumptions we make on the cryptographic tools we apply.
Here, we only discuss the notation, and return to the actual assump-
tions in Chapter 2.

KA: The encryption key K is known only to A, a principal of some sort
(a human, a process, a machine, or what have you). It is normally
assumed that the key is secret. A key is secret if it is (believed) to
be known only by the “owner” and those the owner trusts in this
matter4. KAB is used to indicate that the key is known to both A
and B, and as such represents a bidirectional encryption channel
between them.

{X}K: The datum X is encrypted with the key K; the key is explicitly
not assumed to a shared key. If a key K is used for encryption,
there must exist a key K̃, called the complement of K, by which
the message can be decrypted. In shared-key system K = K̃ while
this is not the case for public-key systems.

{X, Y}K: the datums X and Y are encrypted together. In addition to be-
ing “hidden” by encryption, it is not possible to determine, with-
out access to the key K̃, the relative size of X and Y.

(KA, K
−1
A): A public-private key-pair, where the private key K−1

A is known
only toA. Usually the public key (KA) is publicly known, but need
not be. We need not assume that

{{X}KA
}K−1

A
= {{X}K−1

A
}KA

although this is sometimes true. It generally is the case that K−1
A =

K̃A, but the two notations are used to enable us to distinguish a
decryption key from the secret part of as public-secret key-pair.

Public-key cryptography is used for three purposes:

Encryption: PKψ(A,K) represents the key K, known only by A,
supposed to be used for encryption; that is, sending encrypted
messages to A.

Signature: PKσ(A,K) represents a key for signatures (and verifi-
cation of signatures).

4Normally it will also be assumed that those that are trusted to know secrets that
might be used for authentication refrain from using them for this purpose.

16 Introduction

Key agreement: PKδ(A,K) is a key for the exchange of encryp-
tion keys.

Regardless of how a public-secret key-pair is used, KA is the public
part while K−1

A is the secret part. Not all systems can be used to
implement all three types of functionality.

When PKσ(A,K) the notation {X}K is used to show the signature
by K on X, but possessing {X}K does not imply possessing X. When
we want to indicate that X and {X}K is available together we shall
write [X]K.

〈X〉: A message containing X. In some cases it is necessary to differen-
tiate between the message M and the contents Y of that message.
For example, M = 〈{Y}K〉 captures the fact that Y was encrypted
with K, and sent as messageM. In general, messages are never en-
crypted because an encrypted message is indistinguishable from
a random string of bits at the receiving side.

A→ B : m: A message 〈m〉 is sent from A to B. The notation could
be B a← A : m (where m is the name of the channel) to indicate
that B received m on a channel which is known to originate at
A [24]. However, no assumptions are made on message delivery
since A has no a priori knowledge about who will actually receive
m. A→ B : m indicates what A actually does (sending a message
to B) rather than indicating that B receives it.

In addition, when a message is sent from one participant to an-
other, it is not assumed that the communication channel has any
interesting properties such as providing secrecy, integrity or (or-
dered) delivery.

1.5 The terms security and privacy

Unfortunately, the terms privacy and security are somewhat imprecise,
and the lack of precise definitions inevitably leads to unclear answers
to many question regarding these issues. Laboring to find a rigorous
definition is probably not productive and will resort to discuss some
general aspects. A rough divide of the field will result in the follow-
ing [102, 17, 118]:

1.5 The terms security and privacy 17

Authentication: Verifying an identity claimed by a participant.

Access Control: Protection of resources according to a policy.

Audit Trail: Logging of activities.

Confidentiality: Ensuring that unauthorized participants donot obtain
access to information supposed to be protected.

Integrity: The property that information remains unaltered.

Availability: Resources are supposed to be available upon request, ac-
cording to some policy.

Nonrepudiation: Ensuring that claims can not be disavowed.

The essence of privacy is to avoid that systems leak private information.
There are essentially two ways to maintain privacy (in addition to

refraining from using systems):

1. Ensuring that those one trusts are trustworthy. This approach re-
quires social engineering.

2. Keeping zealous control over information.

The latter is less hard to realize than the former, and users must rely on
security to protect themselves.

We will not be concerned with logging (audit trails), availability or
nonrepudiation as we regard them as outside the scope of this work. In
this light, we can say that security is to ensure that the following two
attributes are maintained for every object.

– Confidentiality

– Integrity

Subscribing to this definition implies that if security is maintained, and
those a user trusts with information are trustworthy, privacy will not
be breached. According to Merriam–Webster’s Collegiate Dictionary
(Tenth Edition) the term privacy is the quality or state of being apart
from company or observation and also freedom from unauthorized intru-
sion. In our setting with distributed systems that may leak information,
we will widen the definition somewhat, to mean what one has when in-
formation (regarding oneself) that is given away (be it explicit or implicit)

18 Introduction

is used solely for the purpose for which it was intended [143]. Several is-
sues arises from such a definition, among them:

– Privacy (as a term and definition) is rendered meaningless unless
it is used in some context.

We believe that in most cases the “intension of use” is external
to the system per se. For example, it is not part of the GSM stan-
dard that the provider should not reveal to outsiders its customers
driving habits.

– Information without an explicit purpose should not be used.

In particular, for every bit of information, it is impossible to define
privacy unless it is explicitly made clear what purpose the infor-
mation has. In many cases, the less these intentions are defined,
the more private one would wish the information to be held. In
other words, if the intentions are not known, one wishes to err on
the side of prudence.

It follows that if a user ensures that no information is implicitly
leaked from his activities, that in itself assists to ensure that his
privacy is not breached. The threat of speeding while subscribing
to a GSM service is an example of this; The fact that anonymous
subscriptions is an option with many service providers does not
alter the validity of the argument.

The upshot of all this is that users which rely on their private comput-
ers will probably have to protect their privacy themselves rather than
relying on service providers.

Chapter 2

Cryptography

2.1 Introduction

Cryptography is very different from security. At best, cryptography is
one of a large set of tools and engineering techniques one can use to
achieve security. Encryption can be implemented on any general pur-
pose computer (e.g., it can readily be made available in software) while
security requires users to act in certain ways. Even worse, as it will
become evident, obtaining security requires that users are willing and
able to understand the rather complex and subtle relationships that ex-
ist between different entities—be it trust relations between principals,
relations between the keying material in public-key cryptosystems, or
between integrity and confidentiality.

This chapter features an overview of the cryptographic techniques
that are employed in both the text, in systems that are discussed, and
in implementation efforts we will present. In addition we give a short
overview of smartcard technology in Section 2.5. A smartcard can be
regarded as a tamper proof device, and as such it can be used as a
building block in secure systems. However, as always, it is not a “silver
bullet”.

The disposition is aimed at readers with a good understanding of
computer science, but lacking insight into cryptography. The presen-
tation is terse as the aim is not to educate but rather to establish a
common vocabulary and clarify our assumptions. There are many ex-
cellent tutorials on this material, see for example [10, 50, 93, 128, 115,

19

20 Cryptography

119, 106].
The cryptosystems that will be discussed are secure in a computa-

tional sense rather than an information-theoretical sense. By this we
mean that is it believed to be computationally infeasible rather than
information-theoretically impossible to violate the assumptions that will
be put forth. This infeasibility might stem from either the sheer size of
some language (key space) or from the number of calculations needed
to perform some task (factor a large composite number). Obviously,
development in technology will alter which computational tasks are
considered infeasible. Presently, cryptosystems that, on average, re-
quire 290 calculations or more, are considered safe for more than 10
years [21]. That is, having made a conservative estimate of the tech-
nological development in the coming ten years, it has been concluded
that, ten years from now, 290 calculations will still be considered infea-
sible.

If we for a moment allow ourself to be somewhat informal, we
can say that the term infeasible denotes just that: A task that can not
be performed in practice regardless of how many resources are made
available. As discussed above, it is believed to be infeasible to execute
290 calculations, more or less regardless of how they are implemented.
A more formal view is also possible: we can define the term feasible
to mean “computable in polynomial time and space” and infeasible to
mean “not computable in polynomial time and space”. This implies that
a function f is infeasible to compute if it belongs to the class FNP (the
class of problems as hard as those in NP, but that exists as functions
rather than decision problems). A function f is feasible if it belongs to
the class FP (the functions that can be computed in polynomial time).
In the case of shared-key cryptography the length of the key is normally
fixed (even if one can choose between several different lengths), and
the size of the key space is given as a function of the length of the key
(in bits). In most cases the key space will grow lineally with the key
(viewed as a number) and thus exponentially with the length of the
key. For public-key encryption this is often not so and we rely on the
exponential growth in the number of calculations needed to invert the
one-way function when the key is made longer (bigger).

Regardless of how one defines “infeasible”, there are two ways to
view cryptography. One is to view cryptography as manipulation of
symbols where security properties are expressed formally, the other
as operations on bit strings where security properties are expressed

2.2 Shared-Key Cryptography 21

in terms of computational complexity [4]. All of our analytical tools
regard cryptography as manipulation of symbols.

This chapter will present shared- and public-key cryptography, di-
gests, and digital signatures, with the corresponding problems on which
they rest. An existing system is presented to demonstrate how crypto-
graphic technology is put to use.

First comes shared-key encryption in Section 2.2; IDEA will serve
as example. Then, public-key encryption in Section 2.3, starting with
one-way functions (with MD5 as example) in Section 2.3.1. Then, RSA

and the Diffie-Hellman exponential key exchange can be presented as
examples of public key cryptosystems. In Section 2.3.3 some light is
shed on elliptical curves as a newer algebraic setting for cryptosystems;
we apply these methods in a later chapter. The notion of digital signa-
tures is discussed in Section 2.3.5. PGP will be used to demonstrate an
implementation of software providing security.

Cryptography is commonly used as an integral part of communica-
tion protocols. In most situations, it is assumed that all encrypted mes-
sages are properly engineered [54, 57]. Furthermore, it is assumed that
users are able to generate good encryption keys (and nonces) when re-
quired, although it is acknowledged that the notion of “good” depends
on both the purpose and the arbiter. Producing random data is an im-
plementation issue that depends to a large degree on the actual system
in use. Modern computers come with high-quality random number gen-
erators built in; entropy is often obtained from the thermal noise (John-
son noise) generated by a resistor [72]. Hunting for random numbers
has been a tedious task, but that seems to come to an end.

2.2 Shared-Key Cryptography

Shared-key (or, symmetric) encryption is the traditional (pre 1976)
form for encryption [75]. Both parties know a secret (key) and it is
used as input to a transformation. The transformation is at least a sur-
jection from one language to another (if the languages have the same
size, the transformation is a bijection); this is required if decryption is
to be unique. Secrecy should not rely on knowledge of the transforma-
tion in itself, mostly for practical reasons as the transformation then be-
comes part of the key (which is to be kept secret). When the algorithms
is (logically) part of the key, it becomes very hard to remember the key

22 Cryptography

without resorting to written sources. When the only requirement for
security is that the key is kept secret, it is simple to understand how
to maintain security in such cryptosystems. However, distributing keys
between the parties requires a secret channel, and the cryptosystem is
no more secure than the channel for key distribution. Distributing keys
is the major difficulty when using shared-key ciphers in isolation.

A shared (secret) key represents an encryption channel. This chan-
nel is assumed to have the following two properties:

Secrecy: Access to encrypted messages is denied to anyone who does
not have access to the correct key. In particular:

– Given an encrypted message {M}K it is infeasible to deter-
mine M, for all M, without prior knowledge of K; e.g., the
cryptosystem is immune to ciphertext-only attacks.

– Given any sequence of encrypted messages {Mi}K for any se-
quence of messages M1,M2, . . ., it is possible to determine
neither K, norN from {N}K; e.g., the cryptosystem is immune
to known-plaintext attack.

Integrity When receiving a message 〈{M}K〉, after processing and de-
cryption, it can be determined whether M has been fully recov-
ered; no altering will pass undetected, including truncation. It is
also assumed to be infeasible to construct {M}K, for allM, without
knowing K.

Most shared-key ciphers transform one block of data into another
block of the same size. The size of a block varies, but 64 bits is common.
Because the transformation is a bijection, identical blocks of data will be
transformed to identical blocks of encrypted data. Unless precautions
are taken, this reveals information about the encrypted data; cryptanal-
ysis is performed by exploiting such leaks of information. To remove
this weakness, chaining can be applied. One possibility is cipher-block
chaining (CBC). Assume there are t blocks of data: x1, x2 · · · xt. En-
crypting xi yields ci. Prefix the data by a block of random data, called
initialization vector (IV). Regard the IV as c0. Then, for each block xi,
xor xi with ci−1 before encryption. Each encrypted block ci, except
c0 which is random data, will depend on the preceding block. During
decryption, single bit error in block ci will render xi invalid, and in-
troduce a single bit error in xi+1. It is an advantage that the chaining

2.2 Shared-Key Cryptography 23

is “self restoring”; notice, however, that any checksum applied to the
decrypted data will fail, and give an indication that the incorrect key
has been used.

Regarding encryption in general we will make some broad assump-
tions:

– Given {X}K, we assume it is infeasible to precisely determine the
length of X; in an implementation the length of X can be obscured
both by padding and by compression.

– Given {X, Y}K it is infeasible to determine, without access to the
key K, the relative size of X and Y.

– We assume that {X}K and {Y}K are equivalent in the sense that
without access to K, it is infeasible to determine whether X =

Y. Actually, this assumption is related to implementation issues
rather than cryptography because, obviously, encrypting X yields
a different result than encrypting Y. However, by using a random
initialization vector and CBC mode when encrypting, this assump-
tion can be made to hold.

These assumptions can be summarized as “perfect encryption” [22].
Shared-key ciphers achieve their secrecy by diffusing the data out

over the encrypted data, and by making the relationship between the
key and the cipher text as complex as possible. Complex combinations
of transposions and substitutions are repeatedly transforming the data
under control of the key.

As an example of a shared key cryptosystem, what follows is a pre-
sentation of IDEA (see below); much of its fame stems from it being
used in PGP [82, 6, 149]. It is a block cipher, encrypting 64-bit blocks of
data with a 128-bit key. The same algorithm is used for both encryption
and decryption.

First, the key is used to generate 56 sub-keys. A block of data is
split into four 16-bit sub-blocks. There are eight identical rounds. In
each round, each sub-block of data is xor’ed, added and multiplied
with six new sub-keys and the other three sub-blocks of data. In the
ninth round, one of the remaining four sub-keys is applied to each
sub-block. The operations involved in the algorithm map nicely down
to those available on contemporary general purpose computers, and
the algorithm lends itself to fast implementations even on 16-bit ma-
chines. The performance is excellent: on (an old) 486DX2-66 data can

24 Cryptography

be de/encrypted at 1.7 Mb/s, while on a (somewhat more) modern ma-
chine, a 180 MHz PentiumPro, data can be de/encrypted at 16 Mb/s. A
hardware implementation is available, it de/encrypts at 300Mb/s.

2.3 Public Key Cryptography

In the mid seventies it was understood that there are some mathemat-
ical phenomena that can be exploited in a fascinating way [37, 36].
This section describes the ideas on which public key cryptography is
founded. Much of this material is mathematical in its nature, but focus
is on the concepts rather than on the proofs. This presentation is built
on [97].

Invented in 1976, public key encryption has made it possible to use
encryption in new settings, mainly by making key maintenance less
a burdon. In short, public-key encryption offers two interesting fea-
tures [110]:

– An existing channel that provides integrity (the sender of data on
the channel is known) but not privacy, can be converted into one
that also offers privacy. This is called key exchange.

– An existing channel that provides integrity can be used to add se-
crecy and/or integrity to any other channel. This is called digital
signature.

In the next sections we will briefly discuss both “ordinary” one-way
functions and those with a trapdoor built in. Then we will present some
public-key cryptography proper.

2.3.1 One-Way Functions

Public-key cryptosystems rely on the existence of one-way functions. A
function f is one-way if it satisfies the following conditions:

1. f is injective (one-to-one). Notice that even though the “hash
functions” (or “digital digest functions”) are often said to be one-
way functions, they are one-way in a very different meaning of
the word; we will return to this class of functions below.

2.3 Public Key Cryptography 25

2. f(x) is at most polynomially longer or shorter than x. Notice that
there is no reason why elements in the preimage of f have to be
the same length as in the image.

3. f can be computed in polynomial time on the length of the input.

4. The function f−1, the inverse of f, is not in FP. That is, there exists
no polynomial-time function which, given y can find an x such
that f(x) = y, or determine that such a value does not exist. f−1

must then be a member of FNP.

Obviously, finding a function that is in FP, but where the inverse is not
in FP but rather in FNP, is only possible if the two classes are different.
This can only be the case if P 6= NP and the discussion that follows will
hinge on P being different from NP.

To construct a working public-key cryptosystem, one needs a par-
ticular kind of one-way function: The trapdoor one-way function. A
trapdoor one-way function is a one-way function as described above
where there exist some information that enables the holder to perform
the task that is infeasible without. The best known example is that of
factoring. Given two “large” primes p and q and the composite number
n = pq, any operation which is easy when one knows p and q, but
infeasible without, could be used as foundation for a trapdoor one-way
function (because factoring is so hard). Factoring is a function (not a
decision problem), and it is believed to be in the class FNP (it is not in
NPC, but nevertheless a “hard” problem [49]).

As an example of a one-way function with a trapdoor, we will de-
scribe the Diffie-Hellman problem. It is well known that given a (large)
prime p and the Galois field GF(p) (that is, the numbers {0, 1, . . . , p−1}

under arithmetics modulo p), it is simple to calculate

Y = αX mod p, for 1 < X < p− 1

where α is a fixed primitive element of GF(p) (that is, the powers of α
generate all the non-zero elements {1, 2, . . . , p− 1} in some order). It is
believed to be infeasible to find X given Y and α. However, given X and
α it is easy to find

Y′ = αXX
′

mod p, for 1 < X < p− 1

So while finding the discrete logarithms is infeasible, knowing X or (X′)
amounts to a trapdoor. The Diffie-Hellman exponential key exchange is
built on this problem [37].

26 Cryptography

Assume Alice wants to communicate secretly with Bob1. As a one-
time set up Bob has published appropriate prime p and generator α
of Z∗

p (that is, of GF(p) as explained above). Alice chooses a random
secret x, 1 < x < p − 1 and calculates her part of the key KA = αx

mod p. She then sends the first message:

Message 1 A→ B : KA

Upon receipt, Bob chooses a random number y, 1 ≤ y ≤ p−1, computes
his part of the key KB = αy mod p, and sends the reply:

Message 2 B→ A : KB

The secret, shared key is KAB = (αy)
x

= (αx)
y; all arithmetic done

modulo p. Both Alice and Bob can easily calculate KAB as explained
above.

Diffie-Hellman can also be used to send encrypted messages, not
only to establish a secret channel. Assume Bob has published the three
numbers α, p, and KA = αx mod p as his public key. In order to
encrypt the message M, Alice generates a random number y and cal-
culates KB = αy and K = (αx)

y mod p. The key K can be used as
an encryption key to create {M}K. Alice sends the message 〈KB, {M}K〉.
Because Bob knows his public key, he can calculate K, and decrypt the
message.

Secrecy is based on

KAB 6= (αx)
αy

6= (αy)
αx

That is, to find KAB one needs either x or y. An attacker must thus find
x from Message 1 (or, obviously, y from Message 2), which amounts to
finding the discrete logarithm (that is, given KA = αx find x. If p is 1000
bits long, about 2000 multiplications are needed to find KAB from KA
and y. An attacker, who must find x from αx, is faced with something
in the order of 2100 operations. No easier solution is known. On the
other hand, it has not been proved that solving the discrete logarithm
is the only way to obtain access to KAB.

2.3.2 RSA

RSA is based on a similar mathematical problem as Diffie-Hellman. Al-
ice chooses two “large” primes p and q, she finds the product n = pq

1Alice and Bob was introduced in [109] as the first couple in cryptography.

2.3 Public Key Cryptography 27

of these primes, and chooses an exponent e. She publishes (n, e) as her
public key. When Bob wants to send her a message M he calculates
C = Me mod n. This exponentiation is easy, and it is also a one-way
function. If p, q and e are chosen with some care, finding M from C is
infeasible. However, Alice knows the factors p and q and she can easily
find a number d such that

(Me)
d

= Med ≡M

(all arithmetic modulo n). That is, she has some material enabling her
to open the trapdoor; the pair (d, n) is called Alice’s private key.

The security of RSA depends on the difficulty of factoring n, be-
cause even if n is (part of) the public key it is infeasible to find p and
q (requires factoring), and thus infeasible to find M, and infeasible to
find d given e (which is the other part in the public key). To model
a known plain-text attack, assume a known message M and the cor-
responding ciphertekst C. To find d the attacker must solve M = Cd

mod n, which is finding discrete logarithms; a well known hard prob-
lem. A ciphertext-only attack is equivalent to solving C = Me mod n
where (only) C is known, which is equivalent to taking roots modulo a
composite number with unknown factorization.

In order to make RSA secure n has to be large, typically 1024 bits or
more. A software implementation of RSA, run on a Sparc-II, uses 0.93
sec. to encrypt (sign) with a 1024 bits modulo [115].

2.3.3 Elliptical Curve Cryptography

A signature made with RSA is as many bits as the composite number
in the key (called n in most context). Typically, n will be between 512
and 2048 bits long. That is, anything encrypted with RSA will be as
long as the number n in the public key. Elliptical curves provide an
alternative algebraic setting for cryptosystems where the public keys
can have fewer bits.

Whether finding discrete logarithms is infeasible or not depends not
only on the size of the field, but also on the “structure” of the underlying
(cyclic) group. To that end, the group of an elliptic curve defined over
a finite field has interesting features.

En elliptical curve can be drawn. In this interpretation, a number
is represented as a point P = (x, y) on the curve, and the number −P

is defined as (x,−y) (flipping over the x-axis). A non-vertical straight

28 Cryptography

line that intersects an elliptical curve, does so in two more places (this
is a property of the curve). Adding two numbers (points) is defined as
drawing a line from one to the other, yielding the negative of the sum.
That is, the line through P and Q intersects the curve in −R, and R can
be found by flipping over the x-axis. Adding a point to itself is also
addition, but with only one point. This is defined as drawing the tan-
gent to the curve in the point, and the point where the tangent crosses
the curve is then again the negative of the resulting number (that a
non-vertical tangent to the line will cross the line in another point, is
another property of the curve). Having defined the + operation, and
the number 0 as a point to which all lines are vertical (infinity), we
have an algebra.

Assuming that we only consider points with integral (x, y) compo-
nents, we can construct a curve over the field created by a large prime;
the curve would then form a group. Then, informally, the elliptic curve
discrete logarithm problem can be stated as follows: Given two numbers
Q and P on a curve E, where Q = iP, find i. In other words, more or
less the same mathematical problem as finding discrete logarithms, but
in a different algebraic setting. For details, please consult [92].

Some attacks that are known on “ordinary” discrete logarithms are
not applicable in the setting of elliptical curves. Therefore, when public
key encryption is realized in this setting, the result of encryption can be
much shorter than, for example, RSA keys (and still provide comparable
security). It is believed that a cyclic subgroup of size 2160 provides a
secure setting for a cryptosystem. A public key is a number and consists
of two points on the curve, thus a key is twice the size (number of bits)
as the size (in bits) of the group.

2.3.4 Hash function

One more cryptographic technique is required in order to construct
cryptosystems with high performance: The digital hash. A hash func-
tion f must have the following properties:

Compression: f maps an input of arbitrary but finite length to an out-
put of fixed length. The output is typically 128 or 160 bits.

Ease of computation: f is easy to compute.

Preimage resistance: Given only f(x) it is infeasible to find x.

2.3 Public Key Cryptography 29

2nd-preimage resistance: Given x it is infeasible to find a second in-
put x′ so that f(x′) = f(x).

Collision resistance: It is infeasible to find x and x′ so that f(x) =

f(x′). Notice two degrees of freedom.

Because f maps a long input down to a short one, it is obvious that
the function is surjective, and thus not a one-way function as described
above in Section 2.3.1. In other words, it is obvious that no message-
digest function actually is collision resistant.

Given a block cipher, a hash function can easily be constructed. Use
the key 0 (zero), split the input data into the block size of the cipher
and encrypt each block in CBC mode. The encrypted last block depends
on all previous blocks, and if the usual assumptions hold for the cipher,
a hash function has been implemented.

When f offers preimage resistance, proving that one has the digest
is as secure as showing the original data. Furthermore, when f offers
2nd-preimage resistance, the digest of data will be proof that the data
was available when the digest was taken; when the data is secret, this
can be used for authentication. The first use of one-way functions was
to authenticate users’ passwords against a digest of the password stored
in a file [144].

MD5 will be our example of a dedicated hash function. In MD5, the
length of the input is added to the input itself (effectively making the
hash depend (also) on the length of the input), and then padded to a
multiple of 512 bits. The data is then divided into a number of 512-bit
blocks, which again is divided into 16 32-bit sub-blocks. The algorithm
has four rounds, in which both logical (logical and, xor, or and not),
non-linear (sine) and shifting is applied to the data. The size of the
input is limited to 264 bytes. The speed of MD5 was reported to be in
the 100 Mbps range [138].

2.3.5 Digital Signatures

A signature on a (paper) document creates a tie between the document
and the person. Because signatures (supposedly) are unique, the sig-
nature is also undeniable. However, when important documents are to
be signed, witnesses and/or a notary public must be used as well. The
value, and limitations, of a written signature as evidence is well un-

30 Cryptography

derstood. In particular, signatures are understood to be evidence, not
proof [110].

The second contribution of public-key encryption is that of digital
signature (the first, as explained, is key exchange). In relation to private
computing, there is an particularly interesting aspect to keep in mind:
A digital signature is bound tightly to the signed document and only
loosely to the signer, while a handwritten signature is bound tightly to
the signer and only loosely to the signed document2. The implication
is that when it is established that a digital signature is (cryptographi-
cally) valid, it is still an open question who actually made it. Compared
to “ordinary” signatures, there is an fundamental difference, in that “or-
dinary” signatures can not be valid and produced by “someone else” at
the same time. Also, it is hard to imagine how to arrange for a written
signature to be detached from the document, while still being valid.

Because (cryptographic) validity does not vouch for any binding to
a person, technical issues related to the protection of encryption keys is
of crucial importance to privacy.

2.3.6 Conclusions

This dissertation is not concerned with cryptography, and we will take
a “block box” approach. To that end, we will assume the following:

– It is infeasible to find an encryption key by means of cryptanalysis,
be it shared- or public key cryptography.

– Inverting a hash function is infeasible.

– Unless explicitly noted, a good source of randomness is available.

As with all cryptographic tools, caveat emptor!

2.4 Putting it all together: PGP

Pretty Good Privacy (PGP) can be used as an example of how ciphers
are put to use. Although PGP is very well known, we include a short
description here because we will use the format of one of its packages
as example later.

2As was first observed by Matt Blaze at AT&T (stated by Carl Ellison in the SPKI

mailing-list).

2.4 Putting it all together: PGP 31

PGP is a program intended to provide users access to high quality
encryption [149]; the format used by PGP is well documented [6, 31].
In general, PGP provides users with the ability to sign and encrypt (and
decrypt) with shared key or public key ciphers. PGP has an the distin-
guishing feature that it explicitly does not assume any infrastructure
for exchanging and verifying public keys. Authentication of messages
is based on well-known public keys [11].

PGP uses IDEA as a shared key cipher, up to version 2.6.3 solely, MD5
for hashing, and RSA for public-key encryption. A message encrypted
with a public key can be used as an example of how PGP encodes mes-
sages; it is described in great detail in [6].

PGP uses the term “package” to indicate data of some type. For ex-
ample, a package containing a message encrypted with a public key
consists of information used to ensure integrity together with informa-
tion on the key that is used, followed by an IDEA key encrypted with the
RSA key, followed by the original message encrypted with the IDEA key.
Integrity of the RSA package is ensured by appending a 16-bit check-
sum of the encrypted IDEA key to the key itself before RSA encryption.
Integrity of the IDEA package, which contains the original message, is
ensured by prefixing the data with 64 bits of random data followed by
the last 16 bits of random data again. Upon decryption with IDEA, the
16 bits starting at bit 49 up to bit 64 should be identical to the bits 65 to
80. Furthermore, the random material ensures that the cipher feedback
chaining is properly initialized. Taking it all together, the format of a
message encrypted with a public key is as follows3:

IKP, {KS}KP, {R, r, X}KS

where KP is a public key and IKP the “name” of the key, KS is a fresh
shared key, R random data, r the last two bytes of R, and X the data
that is to be protected by encryption.

PGP has become very popular indeed. We believe the main reason is
that no infrastructure is needed to use PGP. In fact, PGP can be viewed
primarily as a format and as software to support the reading and writing
of this format. Because of this PGP can and must be used according to
the users’ needs. To make this point, we can contrast PGP to PEM [88]4.
In PEM, all messages must be signed; the standard dictates the usage of
the tool.

3There are many more fields, such as version numbers; these have left out.
4We will return to PEM in Chapter 4.

32 Cryptography

The success of PGP is simply the lack of policy (and hence infras-
tructure). We believe this is an important issue, and will return to the
practice of dictating policies several times throughout the dissertation.

2.5 Smartcards

In many settings where security is deemed necessary, in particular where
authentication is required, smartcards are used to implement tamper
resistant storage of secrets. It can be holding a security token used
for authentication, possibly in combination with a password, or hold
valuables in the form of call-time on a telephone or numbers of trips
taken on a bus; it can be need to collect data, or store data that is to
be kept secret (encryption keys). In the first two applications, modi-
fications to the data must be controlled, in the last, access in general;
the tamper-resistance property of the card enables both types of appli-
cations [104, 41, 61].

What is commonly called smartcards are governed by an interna-
tional standard [73]. In technical terms, a smartcard is a Contact Inte-
grated Circuit card (IC). Plastic cards with a magnetic strip have been
with us for many years and they have had a strong influence on the size
and shape of IC cards. At the time of their conception, the dominance
of magnetic strip cards was so absolute that it was felt that all IC cards
would have to carry a magnetic stripe also. Physical standards of such
cards were embodied in ISO 7810 and ISO 7811 standards. These stan-
dards have been adopted within ISO/IEC 7816 and remain the most
relevant standards appropriate to contact IC cards. The ISO/IEC 7816
standard comes in six parts, with two additional parts in progress.

Basically there are two aspects that make the smartcard interesting,
in addition to their almost ubiquitous presence in society. First, the
contemporary processors in such cards are general-purpose machines
programmable in general purpose languages such as C or Java. The
implication is that applications can be rapidly developed, debugged and
deployed. In particular, cards supporting applications written in Java
take advantage of the “sandbox” security model offered by the language
runtime system [130].

Second, contemporary smartcards are manufactured in such a man-
ner that the card is tamper resistant. Some successful attacks have been
reported [12, 13], but manufacturers are also steadily improving the

2.6 Conclusion 33

cards We assert that although tamper resistance is technically correct,
for all practical purposes, contemporary smartcards are tamper proof.
Or, in other words, attacks on systems which employ smartcards will
probably mainly be directed against other components than the card
(such as protocols). An intermediate attack—attacking protocols run-
ning on the card—has also been reported [76].

On their applicability, it suffices to mention that as of this writing,
cards are available with 64 Kb of memory available for applications
and data, and the cards come with embedded processors to speed up
modular arithmetic.

Following the authors of [116], employing smartcards implies that
borders must be drawn between a larger than usual set of rôles. Among
them we find:

Cardholder: The party who has day to day possession of the card.

Data owner: The party that own (controls) the data on the card. In the
case of a pre-paid subscription card it will be the service provided.

Terminal: The device which provides the card with an interface to the
“world”. This might or might not be the service provider.

Card issuer: Having issued the card, the issuer most likely controls the
operating system on board, and hence the possibility to control
the applications running on the card.

In addition one could choose to consider also:

Card manufacturer: By implementing the hardware all sorts of attacks
are possible.

Software manufactured: In many cases the card will run third-party
software (such as Java).

Having all these rôles in the system makes many new attacks feasible.
In particular the terminal is a crucial point in any design incorporating
smartcards: we will return to this issue later.

2.6 Conclusion

Ubiquitous computing gives rise to ubiquitous encryption, which is prob-
ably good for privacy. However, encryption requires advanced software,

34 Cryptography

and is funded on advanced mathematics. It has been made quite clear
that the security of encryption hinges on a large number of details.

Chapter 3

Reasoning about Security in Dis-
tributed Systems

In more or less all computer systems, users must identify themselves to
the system before they are allowed to carry out operations (consume
resources). Typically, they type a password, proving to the system who
they are. After the user has thus logged in, it is up to the system to keep
track of the originating user for the stream of commands processed by
it.

In centralized systems, this is relatively straightforward; commands
from different users arrive on different wires from different terminals.
In distributed systems, this is much harder: a single network wire can
carry commands from many different users. The machines at the far
end of the network can (and do), of course, label commands with the
name of the originating user, but remote machines cannot always be
trusted.

The solution is usually to require that the commands arrive on an
encrypted stream, and to assume that only the originating user (and
the system processing the commands) has access to the key. This in-
troduces several new problems. One is that keys and users must be
matched up securely — mistakes result in a breach of security. Another
is that human users cannot encrypt and decrypt data by themselves;
they must trust a machine to do that for them. A third, more technical,
problem is that it is unsafe and inefficient to use a user’s identifying
key to encrypt a command stream. In practice, the identifying key (and
other keys) are used to derive a session key with which the command

35

36 Reasoning about Security in Distributed Systems

stream is encrypted. This further complicates the key-to-user mapping
that systems must do.

Unless explicitly stated otherwise, we will assume that possible at-
tackers are active. This model of attack(er) was discussed by Needham
and Schroeder [99] and has become the standard against which sys-
tems should be able to defend themselves (and their users); this model
is often named “Dolev-Yao” after the first thorough analysis [40]. An
active attacker is assumed not only to retain copies of messages that
travel on the network. He is assumed to be a legitimate user who is
able to establish a connection to any other user, and insert a message
into any existing connection.

Broadly speaking, there are six different types of attacks that can be
mounted against a protocol:

Bug: Any bug, either in software itself, in the application of (crypto-
graphic) tools, or in other parts of the system can be exploited;
the weakness in WEP is a recent example [47, 129].

Freshness: The attacker replaces a field with the same field from an
earlier session.

Type: The attacker replaces a field with one of a different type.

Binding: The attacker uses ambiguities in the binding between keys
and participants to substitute one key for another.

Parallel Session: The attacker replaces a field with one from a simul-
taneous and parallel session.

Oracle: Using a legitimate participant in exchange of messages, so that
the computations performed by the user can be used to obtain
useful information.

Any secure system must defend itself (and its users) against these lines
of attack, and any tool to analyse systems should take all of them into
account. Hard to detect errors will normally occur when a weakness in
one area is exploited in another.

This chapter will discuss tools used to reason about security in dis-
tributed systems; it is the usage of these tools later in the text that
makes them worth presenting. Section 3.1 discusses a family of modal
logics used to investigate whether authentication protocols meet their

3.1 Logics for Authentication 37

goals, and to understand the assumptions that underpin them. We will
discuss three such logics, the BAN logic [27], the GNY logic [58], and
the newer SVO logic [136, 131].

When reasoning about security in a distributed system, messages
are assigned meaning, depending on their contents, which keys have
been used (for which purpose) and so on. A theory of authentication
and delegation is needed to describe the meaning of messages and the
rôles participants have in a system at a given time. We review such a
theory which is presented in Section 3.2.

At the end of this chapter, in Section 3.4, some issues are discussed
that are related to infrastructure.

3.1 Logics for Authentication

Systems interact by sending messages. In order to be understood, mes-
sages must be part of a protocol, which can be viewed as a specification
of the format and order of messages. A cryptographic protocol is a pro-
tocol that uses cryptographic machinery to establish certain properties
of messages, such as integrity, secrecy and origin. These properties, in
their turn, enable the recipients to draw conclusions on the meaning
of the messages. A class of protocols called authentication protocols is
particularly interesting. These protocols can, for example, be used to
exchange a session key between two parties, to establish mutual au-
thentication, maybe both these two at once, establishing the presence
of a participant, or all three at the same time. These protocols are usu-
ally quite short, fewer than ten messages is normal [87]1. However, it
is surprisingly difficult to construct protocols that meet the goals the
protocol was meant to meet [14, 3, 15]. One of the reasons is the dif-
ficulty of expressing precisely what the goals are. The remedy we will
discuss here, is logics of authentication, with which protocols can be
analyzed for correctness. No more than some core ideas are presented,
not the logics in full [131, 27, 58, 136]. Surveys of formal approaches
to protocol design and verification can be found in [91, 60, 30].

1An unpublished but continuously updated survey of authentication protocols is
available as [33].

38 Reasoning about Security in Distributed Systems

3.1.1 The BAN logic

The BAN logic is a logic for authentication protocols, and it enables an
analysis of beliefs. The logic consists of a notation to capture interest-
ing aspects of authentication protocols such as that some data is fresh,
that a key is secret, and so on. For example, P K←→ Q denotes that K
is a shared key between P and Q, and that the key is “good”. What it
constitutes for an encryption key to be “good” is outside the scope of
an authentication protocol because it depends on the actual cipher, but
it must normally be secret. What the term secret implies is a question
of semantics, more about this later. The logic has 18 logical postulates
detailing what beliefs can be derived from already held beliefs, in com-
bination with messages that are received. For example: if P believes
that K is a good key for communication between P and Q, and P sees
X encrypted with K, then P should believe that Q has done the encryp-
tion; the interpretation (semantics) is that Q has once said X:

P believes P K←→ Q, P sees {X}K

P believes Q said X

It is here implicitly assumed that P, upon receiving the message 〈{X}K〉 is
able to deduce that K is the correct key to decrypt this message, and that
he has not sent the message himself, in order for him to conclude the
message was sent byQ. In order to verify that the message is legitimate,
the message must contain redundant information [54].

The logic assumes one can state the relevant beliefs all participants
have about the system (including the other participants). When a par-
ticipant believes that a key can be used to secretly communicate with
another participant, it must be assumed that the key is secret; the ques-
tion is whether the other party knows about it or not. New beliefs are
derived from the messages that are received, according to the inter-
ference rules of the logic. The goal of a protocol is usually to ensure
that the participants obtain beliefs about the final state of the system
(knowledge about secret keys, for example). Because the logic is con-
cerned with authentication, it does not aim to reveal information leak-
age of any kind. Perfect encryption is assumed.

Most authentication protocols aim at getting in a situation where all
(usually two) parties believe that the other parties are present, and that
a session key has been distributed, and that all parties believes the key

3.1 Logics for Authentication 39

is good. This is expressed in this way (for two parties P and Q):

P believes P K←→ Q and P believes Q believes P K←→ Q

Q believes P K←→ Q and Q believes P believes P K←→ Q

This summary has briefly mentioned two limitations of the logic.
First, it is assumed in the postulates themselves that the participants
are honest. This has created some concern: The following can be found
in [5]:

It might be quite appropriate to base an analysis in this logic
on the initial assumption that participants believe other par-
ticipants are honest, but it does not seem to be a good idea
to accept honesty as a basic principle.

This is clearly visible in the nonce-verification rule, which says that if
P believes that X is fresh, and that Q once have said X, then Q must
have said X recently—in particular, after P came to believe that X is
fresh—and if Q have recently said X, then Q still believes X:

P believes fresh(X), P believes Q said X
P believes Q believes X

Xmight be a session key, and this rule enables P to believe the key to be
good in that Q now also believes in the key. However, the sender need
not believe in the contents of messages, and the logic thus requires
honesty in order to analyse protocols. A remedy is presented in [5]
where honesty is removed by reformulating the two rules which rely on
it.

Second, there is no machinery to capture information leakage. Take
for example the protocol in [100], where a good session key is sent in
a message where it is signed rather than encrypted while at the same
time, the author is able to construct a proof the protocol ensures that
the participants gain confidence in the key; it is claimed to a flaw in
the logic; the claim is rebutted in [28]. The argument is that because
exposing a secret key violates the assumption that the key is secret,
and any arguments based on this flawed assumption must, inevitably,
lead to false assertions. The crux of the problem is that the assump-
tion A believes A K←→ B is violated by A with the sending of a signed
message that contains the (previously) secret key. When the analysis

40 Reasoning about Security in Distributed Systems

assumes that a key is good (secret), it is then also assumed that the
protocol will maintain the secrecy of the key. In other words, when the
protocol is used to analyse secrecy, it is implicitly assumed that the goals
hold before the analysis begins. This is so because information leakage
can not be modeled in the logic. One can view this as a question about
the semantics of the logic [132].

To sum up, an analysis with BAN is only meaningful when the fol-
lowing assumptions are made:

– All participants are trustworthy. In particular, they keep secrets.

– All encryption is “good”.

– It can be verified that a message decrypted correctly; presumably
by including redundant and identifiable material before encryp-
tion.

– Every participant is able to recognize messages sent by himself.

And the main drawbacks of BAN are then:

– There is no difference between “seeing” a message and under-
standing its contents.

– There is no way to alter beliefs.

– Trust can not be taken into consideration.

The shortcomings of the BAN logic lead us to consider another ap-
proaches which differ somewhat, the so called GNY logic.

3.1.2 The GNY logic

The GNY logic, as BAN it is named after its authors, is seen as a new
approach within the same framework as BAN [58].

In contrast to BAN, GNY distinguishes between what one possesses
from what one believes in. In particular, the contents of a message
might imply different “beliefs” depending on context. That is, the con-
tents of a message and the information implied by the reception of
the message is treated separately. The construct of message extension
enables a participant, having believed that a message is genuine, to
choose whether to believe the senders’ belief [58, sec. 6]. It is thus left

3.1 Logics for Authentication 41

to the receiver to choose whether to trust the sender not to send mes-
sages it does not believe in. Also, in the GNY logic one can reason about
messages that are transmitted in clear text as all messages are treated
similarly. In general GNY contains fewer assumptions and it can be seen
as a more general approach since it does not exclude as many types of
protocols.

However, in order to obtain these favorable aspects, GNY is applied
to a much lower level of abstraction than BAN. In fact, while BAN deals
with the meaning of contents of messages, GNY deals with actual bit
strings (and it is then inferred what the message contains). One con-
sequence is that the number of rules increases from 18 to 50, and the
proofs also increase in complexity. As an example, the second rule for
interpretation of messages (I2) says that if, for a participant P, all of
the following conditions hold: (1) P receives a formula consisting of
X concatenated with S, encrypted with a public key and with a not-
originated-here mark; (2) P possesses S and the corresponding private
key; (3) P believes that his public key is his own; (4) P believes S is a
suitable secret between himself and Q; (5) P believes that X concate-
nated with S is recognizable; (6) P believes that at least one of S, X, or
+K is fresh, then P is entitled to believe that (1) Q once conveyed the
formula X concatenated with S; (2) Q once conveyed the formulate X
concatenated with S and encrypted with the public key (3) Q possesses
the public key:

P sees ∗ {X,< S >}+K, P ∈ (−K, S),

P believes K+KP, P believes P S←→ Q,

P believes φ(X, S), P believes fresh(X, S,+K)
P believes Q said (X,< S >), P believes Q said {X,< S >}+K

P believes Q ∈ +K

The complexity of the axioms are forbidding; and it serves as a
warning on the complexity that it has been shown that this particu-
lar rule contains a redundant premise (S need not be part of the second
premise (that is in P ∈ (−K, S)), and both unsoundness and incomplete-
ness have been found [112]. Because BAN is too high level and GNY is
too complex, we will use a tool named SVO logic; to be presented next.

42 Reasoning about Security in Distributed Systems

3.1.3 The Syverson–van Oorschot logic

The SVO logic, named after the authors, is based on the BAN family of
logics [136, 131]: The BAN- [27], GNY- [58], AT- [5], and VO-[140]
logics. The GNY and AT logics add constructs to overcome problems
with BAN, while the VO logic adds rules to reason about key-agreement
protocols. The SVO logic captures the essential features of the former,
while not being so complex. In addition, the idealization step required
in the BAN logic is made less of a burden. In particular, what to infer
from a message (or component of a message) must be explicit.

The core idea is that a message can not be comprehended before it
can be tied back to some other comprehensible message (such as one
in clear text). For example, if a participant sees Y and Y is the hash of
some other message X, the meaning of Y must be treated as unknown
unless X is known. Only when X itself is at hand can the conclusion be
drawn that Y is the hash of X. Beliefs, then, are essentially defined to be
messages and components of messages that are comprehensible. SVO

also separates the three different applications of public-key cryptogra-
phy: Encrypting, signing and key-agreement (Diffie-Hellman). Regard-
ing the concept of freshness, SVO makes it clear that datums need to be
“genuinely fresh”. If X is fresh, then so is F(X + Y), but F(X ∗ 0 + Y)

is not. When freshness is obtained by combining with fresh material,
rather than the simple use of just including a fresh datum in a message,
then the function must be considered as well.

In BAN, the first step of an analysis is to idealize the protocol. This
step is error prone, mainly because it is difficult to separate the in-
tention of the analyser from the beliefs the reception of a message
should give rise to. For example assume the following message (from
the Needham-Schroeder protocol [99]): 〈{Nb − 1}Kab

〉. The reception
of this message should make the receiver believe that the key Kab is
“good”. However, it is not enough to receive a message that is inter-
preted to have this meaning as the receiver must also believe, prefer-
ably explicitly, that he has received the key in the first place in order to
consider it to be a likely candidate. In BAN, such premises are implicit,
in SVO they are not.

Protocol analysis consist of four sets of premises: First comes the
initial ones regarding well known public keys, belief in the freshness
of nonces (generated by this participant), understanding of the effect
of verifying signatures, and so on. Assume a server S sends a message

3.2 Delegation 43

to A containing a timestamp, the name of another participant B and a
session key good between A and B:

S→ A : {Ts, B, Kab}Kas.

The first type of assumptions would be

A believes fresh(Ts)

A believes A Kas←→ S

and so on.
Second are premises reflecting the receipt of messages in a protocol.

In our example, this would be

A received {Ts, B, Kab}Kas.

Third are premises reflecting what is comprehended by each par-
ticipant of the messages he receives. In particular, random numbers
such as keys and nonces must be assumed to be understood as such; an
unknown (message)component is denoted ’∗’. In our small example:

A believes A received {Ts, B, ∗}Kas

It is assumed here that time stamps have a known and verifiable format.
Last come the premises reflecting the interpretation that a receiver

attaches to a received message:

A believes (A received {Ts, B, ∗}Kas
) ⊃

A received {Ts, B,A
Kab←→ B, fresh(Kab)}Kas

Note that this is one possible interpretation that explicitly has been
made clear. This is to a large extent the replacement of the idealization
in the BAN logic.

From the premises we will derive various goals, such as proving that
the messages exchange a session key, just as in the BAN logic. We will
apply the SVO logic to a protocol later in the text.

3.2 Delegation

The File Repository (a distributed system to be described later) is used
to store (and replicate) files. Access-control decisions are made based

44 Reasoning about Security in Distributed Systems

on certificates. Authority to perform operations on files is usually dele-
gated from the owner to his TDA, which again delegates some authority
to FR and others. We need tools in order to reason about delegation
and access control.

In order for the TDA to delegate authority over a file to FR, the TDA

must speak for its owner. Furthermore, unless the TDA—again, ulti-
mately the user—wants the receiver to have complete control over the
files, e.g., giving them away as it were, this delegation must be lim-
ited in some way. For example, it can have a limited lifespan, or that
delegation requires cooperation between several parties.

Delegation is performed by creating certificates. For example, the
message 〈[A,B,C, F, T]C〉 might be a certificate allowing A to hand a
copy of the file F, which belongs to C, to B, before time T . It is ob-
vious that the interpretation of messages will depend on the context;
for example, how the identity of B is to be determined. Below is a
brief overview of the theory presented in [85, 2], by means of a short
example.

Assume a secret key is stored off-line, and used to make statements
on some other key that is on-line; for example stating who owns the
key. Also assume that a service is to be implemented to provide on-line
verification of the statements previously made by the off-line key. If a
client would like to have verified that a statement is (still) valid, what
should the messages in the protocol contain to reach this goal? The
client sends a request to the on-line server asking if a key is (still) valid.
The on-line server searches its lists of revoked keys, and if the key in
question is not found on any of the lists, the service creates a certificate
stating this fact and sends it to the client. The challenge is to ensure
that the messages “say” what we expect of them. Take the message
sent from the on-line service: The message is to convey that the online
service has not found any proof that the key has been revoked. That is,
the online service states that the key in question is just as good alone
as with the support of the online service.

Security precautions such as requiring an online verification can nat-
urally be built into a system (hard coded as it were). But if one wants
a flexible security regime all these certificates must be written in a lan-
guage that can easily be parsed. Furthermore, it must be possible for
the client to ensure that enough “evidence” has been gathered; to en-
sure that the requirements set forth by the certification authority has
been met.

3.3 Principals 45

Following the example, we must start by asking how the off-line
server requires that its certificates be validated by the online service.
The participants are the off-line server S, the online server O, the user
U and his key KU. The server S states that KU belongs to (speaks for)
U, if O vouches for the statements KU makes

S says KU ∧O|KU ⇒ U

The online service now makes the statement discussed above:

O|KU says KU ⇒ O|KU

which by the axioms of the theory makes it possible for the client to
assert that the key KU “speaks for” U. In addition, the client has gath-
ered the evidence that he has obtained the necessary certificates, and
verified the validity of the requested keys.

Although all proofs have been left out, it is evident even from this
small example that this theory is aimed at a higher level of abstraction
than the logics for authentication discussed above. In fact, the ability
to authenticate is assumed in this theory, and there is no interest in
the encoding of messages, not even encryption, except to indicate that
encryption is used to provide channels on which messages appear.

3.3 Principals

A principal is an identifiable participant in a distributed system [85].
Often a principal will be represented by a public key, and uniquely
named by a digital hash of the key or a number of bits from it; in PGP

the “key identifier” of a public key is the 64 least significant bits of n. In
the setting with private computing a principal will often be a human.
In these cases, a range of means for identifying the person might be
available; the identification will now be moved to the binding between
a key and a uniquely representation of the human (such as a name).
These binding are of interest in themselves, and many infrastructures
have been set up to deal with them, see below.

How a participant is identified and upgraded to a principal will dif-
fer between systems. Usually the crucial decision will be normally be
based on some (set of) assumptions. For example that a secret key is
controlled by a principal, or that the secret key itself is the principal. A
principal might also be a group, either by means of delegation or as a
general construct[85, 134].

46 Reasoning about Security in Distributed Systems

3.4 Infrastructure

The difficulty of distributing (secret) keys inherent to shared key en-
cryption is replaced with the difficulty of authenticating (public) keys
in public-key encryption. To be precise, public key cryptography can be
used to turn a communication channel without any interesting prop-
erties into one which offers integrity, assuming that another channel
which offers integrity already exists [110]. This second channel must
exist in order to verify the public key. Without binding of some attribute
(name, for example) to a public key, nothing of value can be concluded
from the verification of a digital signature. Therefore, unless the user
community is so small that manual verification and revocation is fea-
sible, some infrastructure is required to support the use of public key
encryption.

Such an infrastructure could amount to the following:

Finding a key: Sending an encrypted message to a user requires the
sender to determine which key to use. Unless the sender is well
acquainted with the receiver, this task can be daunting.

Locating a key: When a signed message is received, verification of the
signature requires locating the proper (public) key. This problem
is less hard than the one of finding a key because the key in this
case can be uniquely determined.

Verification: In either case, it must be established wether the key (still)
is valid. The semantics of validity will depend on the application.

In most cases the above difficulties are sought to be resolved by a
Trusted Third Party (TTP), formerly denoted as Certification Author-
ity (CA) [80]. In settings where the user community is very large, as in
electronic commerce, TTPs seem to be indispensable [48]. In addition
to the issues of consistency and performance, important issues related
to privacy arise from such infrastructures [25]. The best known tech-
nology for building such infrastructures is the X.509 certificate frame-
work [32]; it has evolved over the years and is at present available as
X.509v3.

A more flexible approach is available through SPKI[43, 44]2. SPKI

specifies a syntax for specification of names, keys, certificates, and other
2At the time of writing, the structure of SPKI has been formalized in [44], while

the accompanying representation is only available as an “Internet Draft”. The draft is

3.4 Infrastructure 47

objects necessary in an infrastructure for authentication and authoriza-
tion. In addition there are rules for the merging of chains of certificates,
and examples from a wide variety of settings where SPKI can be applied.

When building secure applications, designers are faced with con-
structing, sending, receiving, parsing and understanding messages, to-
gether with the profound issues of naming [98]. Messages usually con-
tain encrypted material, nonces, time stamps and other non-textual ma-
terial making both debugging and understanding difficult. Also, as will
become evident later, human verification of certificates (or, more to the
point, scrutiny of the data they contain) is at times necessary. This task
is close to impossible without formatting and “pretty printing”. To this
end, SPKI specifies also a syntax that can be uniquely parsed. In this
respect SPKI describes a language that informally can be described as
“PostScript of security”.

In particular, the SPKI draft specifies how to uniquely encode cer-
tificates (and other material) so that signatures can be generated and
verified regardless of operating system and programming language, a
format suitable for transport (based on “base64” from [23]), and a sug-
gestion of how to present such material in a “human readable” form;
the latter is named “advanced format” and will be used throughout this
text.

As a small example, below is the advanced representation of a se-
quence consisting of a certificate, followed by a signature. The certifi-
cate says that the key with hash “iCxd0R...” asserts that the name
“Test Name on Key” is associated with the key named as “subject”. The
signature consists of a hash of the certificate, followed by the “name”
of the signing key (the same as is used in the certificate), followed by
the signature.

(sequence

(cert

(issuer

(name

(hash md5 |iCxd0RAnBQA6z9GHhSMjaA==|)

Test Name on Key))

(subject

(hash md5 |LY+G0R2DtB8u8hgEVOgoHg==|)))

(signature

currently known as “draft-ietf-spki-cert-structure-06.txt”; we will refer to this draft as
“the SPKI draft”.

48 Reasoning about Security in Distributed Systems

(hash md5 |9O715rOzoM5o0TZ2iPZIbQ==|)

(hash md5 |iCxd0RAnBQA6z9GHhSMjaA==|)

|KzDO4BqnyCwHWKuB5D0jhoSAQKFpK9O7HST2

cwil0AGCckgEuIsR8EGDP4IBshLr|))

It should be noted that SPKI is geared towards authentication and
authorization, but the language is flexible and can be used to represent
many types of objects. As a small example, below is the format of a pub-
lic key encrypted message, as given in [6] with the corresponding im-
plementation in SPKI. These two messages are identical to the one pre-
sented in Section 2.4 (page 30). The PGP public-key encrypted packet
containing a shared-key is represented as the following SPKI message
(notice the usage of the name of the key rather than the key itself; part
of SPKI is to reduce the chain such certificates creates):

(PGP-public-key-enc-msg

(version spki-pgp-v1.0)

(public-key-encrypted shared-key

(name Test Name on Key)

(ciphertext |i56JOa4EiOj6Vv3DFwkomtGME.....|)))

This message would be followed by a conventionally encrypted data,
encoded as follows:

(PGP-conventional-enc-msg

(version spki-pgp-v1.0)

(encrypted

(3des-cipher CBC |HIpoGgY/kgI=|

|I5E5Dtk9K3NHhNglU7zlXGpRthFhjC6K+j...|)))

The conventionally encrypted packet must be transmitted together with
the public-key encrypted encryption key.

3.5 Conclusion

In general, whether a protocol is secure or not, is undecidable. Even
if only finite protocols are considered, and restrictions are placed on
the generation of nonces and encryption keys, security is still unde-
cidable [42]. The logics for authentication all make it quite clear that
secrecy is a property that can not be analyzed; for a discussion see [100,
28, 133].

3.5 Conclusion 49

In order to discuss with precision the issues related to security in
distributed systems, powerful tools are needed. There are logics to
analyse whether authentication protocols meet their goals, and under
which assumptions. Furthermore, after authentication has been done,
the question of authorization remains. In order to determine what con-
stitutes a user, a prerequisite to grant access, delegation to session keys
and other types of keys must be possible. To analyse such settings, a
theory of delegation is needed.

50 Reasoning about Security in Distributed Systems

Chapter 4

The Open-End Argument

The Open-End Argument was presented in Tage Stabell-Kulø, Feico
Dillema and Terje Fallmyr: The Open-End Argument for Private Comput-
ing, in Proceedings of the ACM First Symposium on Handheld, Ubiqui-
tous Computing, October 1999 [124].

4.1 Introduction

We have designed and implemented a system around the use of PDAs;
the system itself will be described in Chapter 5. During that endeavor
we have come to realize the need for attention to which policies are set
at the time of the design, and which policies are left for the user to de-
cide. Users’ ability to exercise control depends on whether the system is
structured so that no important decision is taken without first consult-
ing him. Moreover, important information for making decisions should
be made available in spite of the engineering tradition of information
hiding.

4.2 Open-End Argument

A traditionally layered system shields the user from the intrinsic details
of the system, and does not require him to be competent to act accord-
ing to the information the system might present about its internal state.
Removing such requirements from the user is generally considered an
advantage, in particular for making make the system user-friendly. Sys-
tems based on this model are designed to be transparent. The “trans-

51

52 The Open-End Argument

parency design principle” states that users should be shielded as much
as possible from the inner workings and state of the system they are
using (see, for example [59]).

This principle is not only applied to end-systems, but also more gen-
erally to layers of abstraction inside the system. While this design prin-
ciple is important for building abstractions and has been applied suc-
cessfully to many system designs, its rigid application suffers from some
serious problems.

The end-to-end argument [113] argues against placement of func-
tional components and services at low levels of abstraction in a com-
puter system, unless it is needed by all clients of that layer and if it can
be completely implemented by that layer. In general, a layer cannot
handle all types of errors, and will in some situations enter undersire-
able states, such as for instance by blocking or even fail by crashing.
Such errors and exceptional events in one layer require intervention
from the layer above, where the peer entities may utilize their position
to resolve the situation below. This may propagate up through the lay-
ers until it reaches the topmost layer, which implements the interface
towards the user. In the end, the user is confronted with a malfunction-
ing system.

With the advent of truly personal and mobile computing and com-
munication devices, we believe the system and user model as described
earlier are rendered ineffective as design goals, for at least three rea-
sons:

– As discussed in Chapter 1 we believe that “real world” private
assets will be stored in PDAs, owned and controlled by individual
users. Such assets can be diaries, keys used for authentication
and/or access control, and possibly electronic money. Users will
want zealous control over such resources; before valuables are
handed to the system, the system must be trusted. Trust and trust
relations are crucial components in any secure system. Trust is a
feeling, based on personal experience, social context and personal
perception. It cannot be measured or quantified by the system in
any way and is often difficult or impossible for a user to quantify
(and specify to the system) a priori. Hence, it can not be used in
algorithmic computations by the system for making decisions and
evaluations. In essence, acknowledging the non-computability of
trust in the personal sphere implies that systems designed with
the traditional system and user model, cannot support the user’s

4.2 Open-End Argument 53

perception of trust and cannot make decisions based on a user’s
trust and trust relationships.

– The user will view the system as providing him with a set of
services for processing, storage, retrieval and communication of
(private) data. Traditionally, the system decides for the user how
such services treat the user’s data. In addition, the system of-
ten is the only designated authority when it comes to making
qualitative judgments (based on policies specified by the system
maintainer/owner). This makes sense in traditional environments
where no part of the system is really owned by the actual user and
the user’s data is not considered (at least by the owner of the sys-
tem) as his private property. When systems are to process a user’s
truly private data, the user will want to be in control of the system
rather than being “just a user”, as the user is the only one capable
of making qualitative judgments regarding his private data.

– The failure mode will not be uniform. PDAs often operate at the
limits of what can be achieved by current technology and opera-
tional problems due to resource shortage must be considered part
of normal operation. Because PDAs typically are powered by bat-
teries, communicate over wireless links and may roam in hostile
environments, several types of failure are likely to occur much
more frequently than in non-PDA based systems. Almost all fail-
ures will occur in what is normally considered as “infrastructure”,
and users are not supposed to interact with problems at such a
low level. However, when operating a PDA each and every user
must be involved also in these issues in order to keep the system
usable even when parts of the system fail as part of almost normal
daily operation.

There is a common denominator in these three aspects. Distributed
systems are designed as layers of abstraction, with peer entities com-
municating with each other over the network. The user, however, often
has no peer in computer systems (in the “other end” so to speak) that
can replace the user for making certain decisions. We have an open-
ended setting when the users rôle is controlling rather than only using
the system. Taken together, systems that encompass PDAs do not fit
elegantly into the classical model of distributed systems design, where
computation may be distributed, but where authority and competence

54 The Open-End Argument

to make decisions is centralized.
Rigid application of the transparency design principle tends to struc-

ture the design in ways that causes two problems:

– A quest for transparency tends to push complexity down into the
lower layers because more functionality is needed to handle ever
more exceptions. As a consequence, hiding the state of the system
from users may in itself result in increased system complexity. In-
creased complexity often leads to more complex failure modes of
the system, which in effect may be increasingly difficult to hide
from users, and so on. For example, NFS (Network File Sys-
tem [114]) tries to shield users from the fact that some files are
remote. It provides location transparency, and users are presented
with a uniform interface for local and remote files. However, an
application that issues a write operation on what seems to be a lo-
cal file can get an error message like “Remote Host Unavailable”,
or simply block (depending on implementation details). Main-
taining transparency over such failures would require the addition
in the system of significantly more (and more complex) machin-
ery, like (write) caching and consistency control, and so on.

– Application of the transparency principle seems to structure the
system such that the control users have over the system is re-
duced. This is especially true when it is combined with a rather
pessimistic user model in which users are not assumed to be com-
petent to make any decisions based on the state of the system.
In such systems, problems that the system cannot handle trans-
parently and which the typical user of the system is not assumed
to be able to handle either, are left to be resolved by the more
knowledgeable system manager or help-desk support personnel.
The position of the user in the system can then be said to be on
the “edges” of the system. When the user is placed at the edge
of the system, avoiding the potential confusion caused by strange
error messages in NFS (example above), is no requirement for the
system design. However, proper handling of failures is of greater
concern in PDA-based systems as argued above.

End-to-end and similar style arguments have led to the idea of “stupid
operating systems”, “stupid networks” and “stupid processors” [105].
We introduce the idea of “stupid PDAs” in order to discuss the struc-
ture of systems that support owners of such machines. A stupid PDA

4.2 Open-End Argument 55

is designed to be simple enough for its owner to feel confident he un-
derstands how the it operates (on his behalf!) and for him to feel able
to control it. It keeps its owner well-informed about relevant aspects
of its (internal) state at all times, rather than hiding it from him. The
essence of what is known about the state of the system should be com-
municated. Only then is it possible for the user to understand what is
going on, and intervene if necessary.

Private computing implies that the owner of a private computer is
in full control of it. For the owner to be confident that he fully controls
the activities of and access to this private computer, systems need to be
explicitly designed for it. “User friendliness” achieved only by applying
the transparency design principle is insufficient or even inappropriate
for such systems. Hiding the true activities and state of the system
from the owner inevitably result in reduced confidence on his ability to
control his private machine.

Confidence is a human feeling and is therefore difficult or impossible
to quantify by others. Like concepts such as “trust” and “competence”
it is defined by a user’s beliefs, experiences and personality (amongst
others). These notions are inherently qualitative in nature and must be
quantified in a meaningful way in order to be used in a computation.
The notion of trust can serve as an example. Alice might trust Bob in
some circumstances, but not in others. Furthermore, whether she trusts
Bob depends on the credentials he conveys with his requests to. She
may accept an authentication performed by a Kerberos server for access
to her work-related documents, but require a completely different set
of credentials for access to private documents. Alice makes a qualitative
assessment of the information presented to her (e.g.: “Is this signature
‘better’ than the other, and do I find it ‘sufficient’ for this particular
request?). Such assessments are well known in “the real world”, where
different credentials (i.e. papers) are needed for different purposes; a
passport is needed in some situations, an ID card suffices in others.
Different papers that “say” essentially the same thing, but with different
quality. Again, it is the notion of private computing using PDAs that
introduces such qualitative assessments into the system. This forces the
designer to either ignore the user, or to ensure that the user can control
the system.

Often a system is considered easy-to-use if it requires little a priori
knowledge and little training from the user. Even though competent
users cannot be assumed for many system designs, we may assume

56 The Open-End Argument

that even ignorant users have the ability to learn. Unfortunately, many
system designs hide much of their inner workings (by design), so that it
is very difficult for a user to learn how to control and manage it better.
We argue that especially in the context of private computing, a system
that is not designed to let a users learn to control and manage it, can not
be considered easy-to-use as users are prevented to learn how to deal
with situations the system itself can not resolve transparently. In order
to support user learning and user control, a system supporting private
computing should provide the user with all the system information he
needs and/or desires.

We believe that a different approach is required when designing
systems to support private computing. In addition we argue that only
the user can and should be the judge of what is important for him to
control. This can not be left for the system to decide. We call this line
of argument the Open-end argument:

Open-end argument: The system should be designed in such a way
that in all situations where qualitative assessment of information
is needed to make a decision, the user is consulted.

This argument guides a system designer in deciding when to follow the
transparency design principle and when to violate it by informing and
consulting the end-user.

4.3 Discussion

We will return to the open-end argument many times, and discussing it
in a different setting demonstrates that it has applicability also outside
the security domain. Here the discussion is related to consistency.

During a network partition it is impossible to know from within the
minority partition, whether it is safe to proceed with a task that alters
shared data [51]. In fact, it is even impossible to know whether a da-
tum has become shared. The user, on the other hand, may be capable
of understanding the situation and evaluate the risk, and, more impor-
tantly, understand the consequences of his actions. Also, the user might
use channels outside the system to gather information for understand-
ing and evaluation.

Consider the following scenario: Alice and Bob are sharing a file
on a distributed file system; they are employed at different sites. On

4.4 Conclusion 57

one fine Sunday afternoon Alice decides to write, she contacts her local
file server and requests a write-lock on the file. The response is that a
copy of the file is available (after all, it is replicated) but the network is
partitioned (between the sites of Alice and Bob) so that no guarantees
regarding either consistency or correctness can be given by the system.
Alice is left to make the decision how to proceed based on her extra-
system knowledge, e.g. about the work habits of Bob and the amount of
work involved in merging possible conflicts later. It is obvious that she
has no guarantee from the system whatsoever, but she decides whether
to proceed or not. She might use the telephone to establish a de facto
lock by means of social engineering, for example, to reduce the risk of
inconsistencies. By exploiting her understanding of the situation she
is able to take the “correct” action even though seen from the systems’
point of view, she has created two inconsistent copies of the file. The
point is, the system did not force her to try to circumvent its services,
but rather made it possible for her to make progress even when she was
in a minority partition. She obtained progress at the risk of conflicting
updates, but at her discretion.

This example demonstrates the tradeoffs that are possible in a par-
ticular setting. We believe the open-end argument provides guidance
when design choices has to be made. In a later chapter we will de-
scribe a distributed storage infrastructure designed with the open-end
argument.

4.4 Conclusion

A machine that is portable and trusted can be part of daily life, and its
owner will soon come to depend on it. Successfully including such ma-
chines in a static infrastructure requires that the design acknowledges
the special properties TDAs have, and the special way TDAs can, and
probably will, be used.

We claim that systems structured in accordance with the open-end
argument will be different from systems targeted at support for static
systems only. Or, in other words, systems that aim at including TDAs
should be designed with extra care. Decentralization of control, man-
agement and authority inevitably leads to new semantics of terms such
as “conflicting updates” and “trusted”.

Discussing this in a setting with concurrency control reveals that

58 The Open-End Argument

an open-ended system shows different characteristics than systems de-
signed using more traditional system design guidelines. It was shown
that this also applies to security issues such as access control.

In the larger picture it has been argued that transparency is intrin-
sically woven into the end-to-end design principle. Unfortunately, se-
curity is ill served with transparency as a guiding principle, and pri-
vate computing even more so. Seen from a security point of view, be-
hind transparent (security) services all sorts of problems lurk. Not only
functional annoyances—such as not being able to grant others access
to one’s own resources—but potentially more dangerous ones such as
not being in control over in which manner private data is transported,
kept, safeguarded, and so on.

We believe that systems that are designed with the open-end argu-
ment in mind will be better suited to give users the full benefit from the
PDAs they have. It is, however, hard to prove that we are right, and we
are faced with a methodological problem. As discussed in Section 1.2,
the best we can hope for, is to design a system and use an implementa-
tion as an argument for the viability of the approach. To that end, the
system we have designed is named File Repository FR; it is described in
the next chapter.

Chapter 5

File Repository

The system described in this chapter, the File Repository (FR) has been
presented on several different occasions. The primary reference is Tage
Stabell-Kulø and Terje Fallmyr: User controlled sharing in a variable
connected distributed system, in Proceedings of the seventh IEEE inter-
national Workshop on Enabling Technologies: Infrastructure for Col-
laborative Enterprises (WETICE’98) [125], but also on several other
occasions [46, 45, 68]. The ideas from FR are now being perused in
PESTO [39].

The trend towards ubiquitous computing adds the requirement that
users should be able to roam between many different environments.
Independent of what administrative domain they roam into, they want
access to their personal resources while using resources available in
that domain. As a general rule, we can say that policies, mechanisms
and resources are different in each environment and system, and a lot
of machinery between systems is necessary in order to maintain and
achieve important nonfunctional aspects like security and safety across
systems. However, creating this machinery is often impossible because
policies and available mechanisms in the different domains are too di-
verse. We believe that ubiquitous computing requires a platform for
distributed systems and applications that makes no assumptions on the
environment the user currently is in.

A reasonable interpretation of the open-end argument states that
many of the nonfunctional aspects in a distributed system can only be
reasonably quantified by the user (for example, who and what to trust).
Qualitative assessment of information should be made by users only,

59

60 File Repository

and the system should be designed to make this feasible for them to do.
Engineerings aspects aside, the challenge of private computing is

to design a system that allows its users to span other systems in such a
way that they retain ownership and control over their own information,
without requiring administrative control over these systems. That is, we
would like a system where individual users can enforce their policies on
their data, even in environments that they do not own or controls.

We have applied the open-end argument while designing FR, result-
ing in a system that provides a novel set of mechanisms. Furthermore,
the mechanisms that are offered, carry few guarantees. In particular,
any guarantees that would include to override the user’s decision are
ruled out. Which guarantees that are in fact offered, and their implica-
tions, will be diuscssesd below.

5.1 Overview

FR’s main design goal is to incorporate trust relations and ownership
into a distributed system. At the same time, we do not want to add
or require ownership and trust relationships of their own that have no
real-world basis or justification. In essence, to achieve this goal we have
separated trust relations from administrative relations. We will present
a few important aspects of FR before we discuss the applicability of the
open-end argument.

– FR has facilities that enables users to control their data and en-
force their real-world ownership. The user is the only one who
can specify security and safety policies and the only one who de-
cides who is trusted to enforce these. A user can delegate author-
ity to other nodes trusted by him, but he need not do so. If the
user does not authorize some part of the system to speak on his
behalf on a certain matter, FR will involve the user himself in the
decision process to resolve questions concerning it.

– Experience shows that users are often unwilling to pay any non-
trivial price for prevention of a risk, for as long as they have not
been negatively affected by it [86]. This is well documented in
the security and safety engineering literature as a very common
cause for security breaches and calamities [8, 101]. We will sim-
ply assume that disasters will happen; nodes will fail, trust will

5.1 Overview 61

be violated, subtle mistakes will be made and accidents will oc-
cur. Rather that trying to avoid such threats, FR supports recovery
by storing and replicating all authorized updates and by record-
ing who authorized them. Notice that logging is not meant as a
measure against threats, but to restore the integrity of the system
after the security breach has been detected.

– Using FR, user Bob can share the content of his files with Alice, re-
gardless of whether Alice is known to FR or not. Furthermore, he
can delegate authority to Alice in the manner he feels appropri-
ate; in particular: public-key cryptography is not a fundamental
building block in the system. Furthermore, Bob decides who is
trusted to enforce his access control policies.

– It is well known that write sharing of data in typical file systems
is relatively rare, see e.g. [78]. FR assumes further that the more
private data is, the less likely it will be shared between different
users. However, we assume that data shared between different in-
stances of the same user, e.g. at different locations, using different
machines, or in different rôles, will be much more common.

Sharing of data in a distributed system with unreliable communi-
cation requires some form of consistency control to resolve con-
flicting concurrent updates. Consistency can be enforced at the
system-level or the application-level. A system-level implemen-
tation would require the user to trust a subset of the system to
run a consistency control protocol on his behalf. We avoids such
requirements by separating replication control from consistency
control.

– We believe that a key to empowering users, is to separate storage
and availability of data (encrypted content) from accessibility to
content. To make the distinction clear, assume that Alice owns
some storage space. She controls this resource and she decides
who may make use of it. But when she grants Bob the right to use
some of this storage, the system should not require of him that he
makes the content available to her as well.

Sometimes a user will have no other option however, than to trust
another user with content in order to make use of his resources,
even though there might not be a basis for such trust. For ex-
ample, a user roaming into unknown territory carrying merely

62 File Repository

his PDA may find himself lacking enough trusted resources to ac-
complish his task. In such settings, editing a file on an untrusted
machine should not require trust in other infrastructures, like the
network links between that machine and the user’s machine at
home. In addition, it should not put the privacy of any other con-
tent of the user at risk. FR allows a user to put his privacy at
risk in order to make work progress, while minimizing the risk
involved.

– Disconnected operation seems to remain a normal mode of opera-
tion for private machines, regardless of the ever growing network
coverage. Also, low bandwidth communication (like GSM data)
prevails. We acknowledges this, and FR supports both discon-
nected and semi-disconnected operation by applying asynchronous
communication and computation throughout.

To sum up, the design of FR carefully separates the different tasks an
infrastructure must support. Because of this, a user can place respon-
sibility for the different tasks on different machines, possibly under a
variety of administrative domains.

Following the open-end argument, is should be obvious that not all
parts of a large, distributed system are equally trusted by all users (and
probably not equally trustworthy either). To capture this and facilitate
the implementation of these trust relations in the system, the design of
FR offers the user to separate the system into the following three sets:

Trusted Storage Base (TSB): The set of servers a user trusts to store
replicas of data (encrypted content). These servers are the storage
service providers of the user. A user may define a different TSB for
different sets of data.

These servers are trusted not to delete the files they store; any
modification will be detectable by anyone who can obtain access
to the content (unencrypted data).

Trusted Replicator Base (TRB): The set of servers that have been given
authority over a part of the user’s storage resources. The servers
in a TRB are trusted to enforce a replication policy on behalf of
the user. Each member of a TRB is responsible for the distribution
of replicas to some subset of servers in a TSB. Together they make
up a directed distribution graph with edges leaving only servers

5.1 Overview 63

in the TRB and ending in servers in the TSB. A user may define a
different TRB for different sets of data.

These servers are trusted to run an algorithm to distribute (en-
crypted) data.

Trusted Access Base (TAB): The set of servers that have been given
authority over a part of the user’s content. The members of a TAB

are trusted to enforce an access control policy on behalf of the
user. A user may define a different TAB for different sets of data.
Typically, TAB members are also members of the TRB.

These servers are trusted not to divulge the content in files.

We believe that by giving the user the ability to divide the infrastruc-
ture in these three sets, we have made it simpler for him to design an
environment according to his preferences.

The separation in space offered by FR is matched with an separation
in time to support disconnect operation:

Replication: The distribution of replicas is performed using an asyn-
chronous request-response protocol. Request and response mes-
sages may be separated by a period of disconnected operation. A
desirable side-effect is that email can be used to transport mes-
sages, using existing infrastructure.

Access Control: Authorization for access to content and storage can
be acquired at a different time than their actual usage, allowing
for work progress when disconnected from the relevant trusted
access base.

The infrastructure is not responsible for consistency control. That task
is separated from replication control and is left to the applications and
the user himself. In addition, the infrastructure is assumed to offer best-
effort service only. Monitoring and control of the quality of the actual
service is left to the user and his (management) applications.

To sum up: FR keeps different responsibilities separate, such that
the user can allocate them to different, but possibly overlapping, parts
of the infrastructure. This design facilitates disconnected operation, as
well as very fine grained access control. We believe this is in line with
the open-end argument.

64 File Repository

5.2 Related Work

The challenges of systems that contain small mobile nodes have been
addressed in several other projects, and many systems address the prob-
lem of variable supply of resources in mobile computers. The duality of
system and application control, captured in the term application aware
adaption is addressed in projects like Odyssey [103], Rover [74] and
Barwan [26]. Projects like INRIA’s Project SOR [16] target at minimiz-
ing user annoyance when disconnected, and seek solutions in providing
transparency to mobility by identifying and using locally available re-
sources. In general, the projects tend to address problems related to
system issues and how to deal with the situation when there is insuffi-
cient resources to continue in the current state. We are not aware of any
project that addresses the issue of providing the user with proper infor-
mation about internal state and the ability to fully control the mobile
machine.

The persistent storage architecture in the OceanStore system [81]
has similar goals and ambitions as FR, but relies solely on public key
cryptography for update integrity checking at clients and is therefore
less flexible. OceanStore does provide end-to-end security, does not
trust the infrastructure with unencrypted content and does not rely
on a trusted computing base for this. It does not, however, allow the
user to specify what part of the infrastructure he trusts, and for what.
OceanStore defines a class of servers that are trusted to carry out proto-
cols on behalf of its users and defines the quality of its persistent storage
service, where FR lets the user specify these.

The Bayou [137], Coda [78] and Ficus [63] distributed file systems
target mobile clients in the system, use replication to improve avail-
ability while weakening consistency and introduce specialized conflict
resolution schemes. They allow disconnected operation under the as-
sumption that conflicting updates are rare, but do little to assist the user
in avoiding conflicts like FR. In FR, it is assumed that conflicting updates
of users relatively anonymous to each other will be rare, while conflict-
ing updates of users that know each other well (e.g. workgroup mem-
bers, or even the same person in different rôles at different locations)
may be common but can be avoided or resolved at the user-level instead
of at the system-level (e.g. by a phone call to your co-worker). These
systems focus on efficient and transparent hoarding/caching for avail-
ability of data during disconnected operation. Hoarding techniques,

5.2 Related Work 65

however, are not suitable for nodes with little amount of storage re-
sources like PDAs. FR assumes that semi-disconnected operation will be
more common than full disconnected operation, and primarily stores
encryption keys on such nodes which facilitate use of untrusted com-
puting resources in its environment.

5.2.1 Coda

It might seem as if FR has striking similarities with Coda [78, 77]. How-
ever, the design philosophies behind the two systems are almost anti-
thetical, and this becomes visible when parts of the system fail.

The most important observation underpinning the design of Coda,
is that conflicting updates on files are rare. That is, if a file is taken off-
line for a day or two, chances are overwhelmingly large that a modified
version can be copied back in place without any conflict. In fact, the
authors report that within a week, the probability that two different
users modify the same file is less than 0.2% [77]. The smooth working
of Coda relies on this being true. Coda is designed after a model where
the “laptop” is in focus. Users have copies of their files on the laptop and
bring the machine home in the afternoon. It is to be expected that files
in a user’s home directory remain unaltered. If, however, both copies of
a file are updated, Coda does not resolve the conflict. In fact, because
Coda does not have any knowledge about the files’ contents it can not
resolve the conflict. Instead, Coda generates an archive containing both
files; it is left as a task for the user to decide what to do afterwards (how
to merge the files).

In a system with private machines and where each user owns several
machines, the assumption that conflicts do not occur will inevitably
lead to failures. In fact, in FR it is assumed that conflicting updates will
be common rather than the exception. In accordance with the open-
end argument, FR strives to detect potential conflicts (and report these
to the user) rather than hide potential risks (as Coda does). In fact,
in [78] it is noted that involuntary disconnection caused by failures are
no different than voluntary disconnections, but that users expectations
and extent of user cooperation are likely to be different. There is a
fundamental difference between Coda and FR in that FR will try its
outmost to inform users about the state of the system while Coda does
the opposite; only in the case of total failure is the user informed about
the (lack of) progress.

66 File Repository

Furthermore, Coda explicitly denotes the copy on a user’s machine
as second-class, while denoting the copy on the server as first-class. In
FR, the open-end argument dictates that when the user owns the file,
the copy the users chooses to denote as “first class”, by definition it is
just that. In our view, it is inappropriate to overrule a decision made by
the user rather than trying to implement it. These differences between
Coda and FR are explained by the different system and user models
each has been designed for. We believe that the open-end argument,
which underpins the design of FR gives a more flexible system, and one
that better suits the need of users with TDAs.

5.2.2 Secure File System

The Secure File System (SFS) is a secure, distributed file system without
centralized control [89]. Having a globally available file system as its
goal, it does not make sense to assume global trust, globally consistent
security policy, or a homogenous user community. One effect of such
an approach is that one can not rely on any configuration being stored
(and kept consistent) on clients.

The approach used in SFS is to embed in the name of files the lo-
cation of the file, together with the public key of the server. Assuming
common protocols, with the information available in a filename a user
can obtain its content regardless of his location. Embedding the name
and location of a file in the name relieves the user from maintaining
local configuration.

For convinience SFS uses NFS [114] to obtain integration in the sys-
tem where clients run. This works well and the performace is satisfac-
tory, but at the cost of requiring a kernel-level implementation.

SFS and FR shares many design goals, and their functionality over-
laps in some areas. But the simple model for locating a file offered by
SFS inhibits replication. One of the main goals of FR was to support
replication both for availability and reliability. In our view the trade-
offs in SFS have resulted in a well designed, but which is less versatile
system than FR.

5.2.3 Authentication

As an extreme example of a service that is not user-centric, we can
consider the design of Kerberos [127, 79]. Kerberos itself is an authen-

5.3 Design 67

tication service, and a system might employ it for authentication of its
users. The setting would normally be a traditional client-server one,
but more esoteric applications can of course be envisioned. In a tra-
ditional setting, the system would require a so-called ticket in order to
grant access to services. Unless you are a user acknowledged by Ker-
beros, it is impossible to obtain a ticket, and thus impossible to obtain
access to resources. This also makes it impossible to delegate access
to resources to users not known to Kerberos. That is, it is impossible
to generate credentials outside the realm of Kerberos that will be valid
within. Kerberos is in widespread use, and it is proper to note that it is
naturally not a weakness in Kerberos itself, and we only use it as an ex-
ample of a design philosophy; Kerberos is a large system (component),
and one need to be aware of the setting in which Kerberos is intended
to be applied [19].

Snowflake provides end-to-end naming and authorization across ad-
ministrative boundaries [71]. It is not as “key-centric” as SPKI (see Sec-
tion 3.4) and allows for other principals than public keys only (like local
channels, shared key secure channels) as FR does.

5.2.4 Taos

When it comes to authentication, we have build FR on the same the-
oretical foundations as Taos [146]. In both systems, principal are the
only source of authority, and authority is transferred by means of cre-
dentials made up by certificates. We believe this is a sound approach.
But where Taos uses the Echo file system [20], and creates a centralized
system out of distributed setting, FR uses a fully asynchronous model
which suits the model of private machines much better.

5.3 Design

The overall design of FR is based on the concept that each user makes up
his own separate administrative domain, based on his private computer.
If a user wants his data to be replicated, the owner of some remote
computer must delegate authority over storage resources. Authority is
proven by credentials that authenticate a channel that speaks for the
user. Requests that arrive on this channel will be honored within the
rules then have agreed upon.

68 File Repository

Because the design is based on the open-end principle, it has been
a goal to ensure that no situation can arise where the user is unable to
progress if he so desires. Obviously, if the system is partitioned altering
data without having access to a quorum might cause inconsistensies.

5.3.1 Storage and Identification

Each version of a file is identified by a globally unique identifier (GUID)
which is a random number (128 bits long in our current implementa-
tion). Due to the random selection from an immense name space, a
new GUID can be generated locally with virtually no risk of an iden-
tical name existing anywhere in the system. It is even infeasible for
a malicious user to correctly guess an existing name. Regarding the
uniqueness of a randomly generated, 128 bit long name in a system,
we refer to the discussion in Section 2.2 on shared-key chiphers.

In addition, using such a large flat name space for identification
has the advantage that it obviates the need for a global name service
because all names are assumed to be unique. There is no need for
consistency control of this name space itself.

The different versions of a file are linked together into an file update
history tree. Each version of a file keeps a reference to the previous
version; its parent. When two updates are concurrent the two versions
will have the same parent; a branch has been created in the version
tree. How to deal with a brach is left to the user to decide.

This scheme also facilitates the recovery from unauthorized updates,
and separation of replication from consistency control.

5.3.2 Communication

We have accepted up front that disconnected operations will occur, and
hance very few assumptions are made about the underlying communi-
cation infrastructure. Transport agents are only assumed to be capable
of implementing an unreliable, untrusted, best-effort transport services
for messages over some transport channel. The communication infras-
tructure thus supports:

– Disconnected operation by separating creation and storage of a
message and its transport, and by asynchronous communication.

5.3 Design 69

– Separation in time of file version creation (storing information
about it) and file version storage (storing its actual content).

– Failure analysis and recovery by storing all protocol command
messages.

– Synchronization and consistency control by applications.

We believe this is sufficient to build a well functional distributed system.
We also believe that no service that cannot be guaranteed has been
promised, and no “strange” errors should be reported (such as the “host
not found” error in NFS).

5.3.3 Policies

Separate access control to (unencrypted) content and access control
to storage resources allows for the separation of content sharing and
storage sharing. Access to storage resources at a node implies access to
encrypted content at that node.

A user that has acquired the right to use resources at a remote node
can delegate these rights to the nodes of the trusted replication bases
he has specified. Actually, the user’s task is merely to acquire the ini-
tial authorization from the remote node and to specify the replication
policies for his files. The required delegations matching the distribution
graph can then be derived from these policies and can be performed by
the system without further involvement of the user. In addition, users
can delegate storage authorization to third parties.

To sum up, before a user can send requests to a node it needs to
require authority over storage at the node, and a channel that speaks
for him. The channel is the result of a delegation, either from another
channel or from some kind of service contract. Once use of resources
has been authorized, a user can send requests to the node for process-
ing.

5.3.4 Replication Policy

A replication policy specifies a set of replicas and a set of replicators.
The set of replicas forms the trusted storage base (TSB) and the set of
replicators forms the trusted replicator base (TRB) for the files subject to

70 File Repository

this policy. The TRB is always a subset of the TSB for practical technical
reasons (see below).

The replication policy is by defaultencrypted so that information
about the members of the trusted replication base (TRB) and the trusted
storage base (TSB) is only made available on a need-to-know basis.
Nodes in the TRB are informed of their membership of the TRB and
of the subset of nodes they are expected to distribute content to. Mem-
bers of the TSB are granted merely the ability to check whether they are
(still) member of this TSB. Hence, nodes can not derive the TSB and TRB

from their view on the replication policy if not explicitly granted. Or,
in other words, the size of the system and the full set of participating
nodes need not be known by any other party than the user himself.

Although this in itself does not prohibit discovering such informa-
tion by untrusted parties using for example traffic analysis, it may sig-
nificantly increase the amount of (technical, legal) resources needed to
complete such a task successfully. By limiting the number of vertices in
the distribution graph appropriately, some degree of protection against
traffic analysis can be obtained. More elaborate schemes are possible,
if deemed necessary [53]. By making one part of the TSB public while
keeping another secret, publication infrastructures can be build that are
resilient to denial of service attacks, in the spirit of e.g. the “Eternity
Service” proposed in [9].

5.3.5 Consistency

During a network partition it is impossible to know from within the
minority partition, whether it is safe to proceed with a task that al-
ters shared data [51]. Traditional, pessimistic consistency control algo-
rithms strive to offer single-copy semantics, i.e. users see only a single
copy at all times [84, 34]. Such strong consistency requirements are
therefore impossible or very expensive to meet in our target environ-
ment, where full connectivity might never happen. The consequence of
this is that merging of conflicting updates may be required upon recon-
nection.

Whether concurrent updates represent a conflict is application de-
pendent; e.g. an append-only unordered log will never see conflicts.
It is therefore our view that the system is not in a position to decide
what represents a conflict and how potential conflicts should be han-
dled. The user, on the other hand, may be able to evaluate the risk of

5.3 Design 71

disconnected operation and understand the possible consequences of
his actions. It should be his task to decide whether being able to make
work progress now is worth the risk of conflict resolution work later. It
is not the task of the storage system to make such an assessment, and it
will therefore not deny a user service based on some built-in notion of
how to preserve correctness for application content. The system’s task
is merely to distribute updates. It is left to the application to define a
consistency policy which determines how replicas are presented to the
user. This is fully in line with the open-end argument.

Applications can obtain the information necessary to determine the
current state of any version of a file, such as the number of current
replicas, number of updates to a file, who made these updates, and
whether the object is shared.

FR allows an application to create an update, while delaying storing
its content. This can be used to implement advisory locking schemes
that work well even in a semi-partitioned network; the created update
without its content functions as the advisory lock. This feature can also
be used to keep track of activities in the system, that is logging, without
having to store the actual data.

5.3.6 Access Control Policy

An access control policy specifies whom should be granted access rights,
and specifies what credentials the user deems necessary and sufficient
for such rights to be granted. All files under one policy is protected
by the same encryption key. This key is only made available to the
members of the trusted access base specified for the policy.

An update will be authorized if it arrives on a channel that speaks
for a user who has authority over storage. Access control thus resolves
to access control of secret cryptographic keys. Or, in other words, FR

is built on traditional shared-key cryptography rather than public-key.
The advantage is that a shared key can be generated from a password,
giving the user a wider range of settings where FR can be applied.

Turning now to technicalities, we first discuss how a user can dele-
gate authority to other users, and then we describe how a channel that
speaks for the user is established.

72 File Repository

Authorization

Authentication and delegation of authority is based on certificates en-
coded and interpreted according to the rules set forth by SPKI [43].
SPKI certificates tie a delegation to a (hash of a) key. Authority can
usually be propagated, making up delegation chains.

The authority expressed in a certificate describes the resource by
naming the access control policy governing it. Authority may be limited
by explicitly listing the GUIDs of individual file versions from this set.
Certificate chains are presented to members of the TAB which verify
them and match the authority expressed in them against the ACL of the
access control policy.

SPKI supports specification of restrictions (validity conditions) in
certificates and ACL entries, including various on-line tests. In FR, an
on-line tests can name another resource (file) by GUID. The on-line ac-
cess decision for that resource forms than the validity condition, which
can be used to implement several useful features:

– Group membership tests, where the membership list is the tested
resource which may be under control of a different user than the
owner of the ACL.

– Certificate Revocation List (CRL) tests, where the CRL does not
need to be controlled by the certificate issuer (but for example by
the owner of the ACL; the certificate verifier).

– On-line verification and confirmation by a user, by listing the user
(his private computer) as resource to be tested. This is most useful
for cases where a user decides to use an untrusted node for a
task. Instead of denying the user service, the system forwards
the request to his private computer which presents it to the user
himself, such that he may confirm his decision securely to the
system and make work progress.

Secure Authorized Channels

Each version of a file is encrypted with its own unique key; its version
key. The set of version keys of a file, one for each of its versions, are
themselves encrypted with a so-called family key which is unique for
that file. An authorized update to a file is a file version encrypted with

5.3 Design 73

a unique version key combined with this version key encrypted with the
family key of the file.

The family key of a file is only made available to members of the
trusted access base; family keys are encrypted with the key of the access
control policy that applies to the file. In order for a user to construct
a new authorized version of a file it needs a newly generated version
key for it and this version key needs to be encrypted by the family key.
As the family key is only available to the TAB for the file, he needs to
make a request to a member of the TAB to encrypt the new version
key with the family key for him. Access control agents thus grant read
and update access to files, by granting access to existing and newly
generated version keys.

Basically, the access control agent delegates authority to the version
key, that can be used once. This version key acts as the already autho-
rized channel for the update. This means that obtaining authorization
for an update is separated from the actual injection of such an update
into the storage system. This is of value for two reasons:

1. Checking credentials may be a relatively time consuming opera-
tion. Our scheme allows this work to start long before its result is
needed for work progress, which may significantly decrease per-
ceived latency.

2. A user may obtain authorization to update when connected and
can use it later even if disconnected from the TAB (but connected
to other nodes of the storage infrastructure).

A potential problem with this scheme is that users may request
(many) such version keys and store them for future use; use them even
after their access rights have been revoked! Limiting or prohibiting de-
layed use of authorizations would prevent this, but it would also reduce
the advantages of the scheme enumerated above. A better solution
would allow detection of such unauthorized updates such that they can
subsequently be removed from the system by some form of garbage col-
lector. This is facilitated by separating creation of a update from storing
its data content.

Creation of a new file version involves then storing its GUID, version
key (encrypted with the family key) and the credentials that were used
to authorize it. Storage of the update involves then adding the data
encrypted with the version key to this meta information about the new

74 File Repository

version. The task of the TAB is to create updates it authorizes, while
the user may later store its encrypted data. If the credentials used to
authorize the creation of an update get revoked before its data is stored,
the update can be rendered harmless by storing nothing as its data as
part of the revocation process. This scheme has two additional merits:

1. It reduces the requirements on random number generation at the
client side, as GUIDs and keys are generated by nodes trusted to
enforce access control policies (i.e. TAB members).

2. It can be used as basis for concurrency control schemes (as de-
scribed in section 5.3.5).

A node storing data for the user may not be trusted with the cryp-
tographic keys needed to discriminate between authorized updates and
unauthorized junk. Removal of unauthorized junk may be needed as
part of a recovery process, i.e. after a node trusted to store and dis-
tribute updates got compromised and sent junk to other members of
the TSB.

5.3.7 Local and Global Naming

At the system level content is identified by its GUID, and is located us-
ing its replication policy. The owner of a given file will always have
authority over the replication policy and he can always locate a copy
of a file. Users without access to the replication policy will need some
form of location service. Typically, a location service will not be part of
FR proper.

Building (persistent) publication infrastructures like Globe [141] on
top of FR with (relatively) anonymous sharing of content, will require
a more structural approach to location services.

5.4 Discussion

Our design builds on the notion of private computing, is based on the
open-end argument and has a user-centric view in that all authority
in the system originates from individual users. The access control and
replication mechanisms do not mandate any hierarchical, fixed or static
structure on administrative domains. This makes our system inherently

5.4 Discussion 75

suitable for building personal ad-hoc infrastructures for sharing and
cooperation between individuals, but it is certainly not limited to such.
Individual administrative domains can be used as building block to con-
struct larger domains using delegation. This requires cooperation from
the individual users; a user can not force another to delegate any of
his authority to him. Enforcing mandatory policies within the system
would require all nodes to be under full control of a single authority.
But even then, users may evade the mandated controls using channels
outside the system. Extending the reach of the mandated policy to
include such channels as telephone, paper notes and floppy-disks is in-
feasible in all environments but the most restricted ones (intelligence
agencies, the military, criminal organizations and the like).

We believe that the lack of mandatory transfer of authority is not
a weakness in our design, but reflects that in most real-world environ-
ments, user cooperation is a requirement to enforce a shared or ‘global’
policy. However, cooperation from non-malicious users may be ‘bought’
by making the use of shared resources conditional to such cooperation.
For example, a company could define a storage policy for its file servers
that allows only storage of files of employees for which it has been del-
egated the rights to define the TAB, TRB and/or the TSB. In addition,
it could setup its communication infrastructure such that only servers
under its control may be reached through it.

Even though we did not list it as a design goal, our design is well
suited for the construction of infrastructures that are to a high degree
resilient to (distributed) denial of service attacks similar to the “Eternity
Service” [9] and “The XenoService” [147]. Denial of service is targeted
at destroying a certain resource or at exhausting the resources of the
service providers. Replication of content together with logging assists in
preventing the former. Resilience to resource exhaustion attacks can be
gained by protecting the use of the resources and/or by ensuring more
resources are available than an attacker is able to consume. Our design
supports resource protection by separating access to storage from ac-
cess to content and its asynchronous protocol. Its graceful degradation
during periods of semi or full disconnected operation limits the dam-
age of a successful network denial of service attack. In combination
with the ability to turn members of a TSB (kept secret untill under at-
tack) into a member of the TAB with merely the exchange of a single
cryptographic key, the amount of available resources can be increased
dynamically to counter the resources consumed by the attacker.

76 File Repository

From a security point of view, the ability to separate storage of data
from control over content opens new possibilities. First and foremost
it implies that safety and privacy can be addressed separately; the de-
gree of replication can be increased to obtain better availability without
having to consider the trustworthiness of new participants. Second, by
leaving to the user community to decide what authentication creden-
tials that are considered “good enough”, FR places very few demands
on the community; we regard that as an advantage. Third, by mak-
ing almost no assumptions on the communication media, the design
and construction of transport agents are relieved from any privacy con-
cerns. We believe this cultivate good engineering.

5.5 Conclusions

FR’s target to support private computing is responsible for most of its
distinguishing properties: a flexible distributed storage system simple
enough to support resource-poor devices. FR allows its users to spec-
ify what part of the infrastructure to trust and assumes all other parts
are untrusted. It supports incorporation of the real-world personal
and business trust relationships into the system, while not dictating
or assuming such relationships in the design itself. Safety and recovery
mechanisms are designed together with security mechanisms, provid-
ing ease of management and resilience against user error and violation
of trust.

A dual-level encryption scheme makes read and update access con-
trol possible without relying on public-key cryptography. Public-key
cryptography is supported for delegation and authorization. It is de-
signed to perform well in networks that are semi-partitioned by sup-
porting off-loading work to nearby, better-connected machines. Sup-
port for acquisition of authorization before actual use of it provides
solid and secure support for disconnected operation.

The design of FR demonstrates the effects of applying the open-end
argument in full.

Although the system has been implemented in several versions, it
has mostly been used as a research vehicle. That is, whenever a new
idea has surfaced, FR has been used as environment for a prototype.
The result is that a variety of experiments have been performed on
FR, and many aspects of it’s design have been altered numerous of

5.5 Conclusions 77

times. The students that have contributed to this body of understand-
ing includes (year of graduation shown in parentheses): Kjetil Kolin
(M. Eng. 1995), Ingeborg Østrem Hellemo (M. Eng. 1996), Dag-Frode
Olsen (M. Eng. 1996), Gaute Moxnes (M. Sc. 1997), Håkon Haugli (M.
Eng. 1997), Ken Are Johnsen (M. Eng. 1997), Heidi Villmones Hund-
håla (M. Eng. 1998), Ronny Håvard Arild (M. Sc. 1998), André Risnes
(M. Eng. 2000), Christine Lund (M. Eng. 2000), and Geir Egil Myre (M.
Sc. 2001).

78 File Repository

Chapter 6

Intent and ability

The section on removal of information is based on Tage Stabell-Kulø:
Security and Log Structured File Systems, printed in ACM Operating Sys-
tem Review, April 1997 [121], while the section on stability of beliefs
is based on Tage Stabell-Kulø, Arne Helme and Gianluca Dini: De-
tecting Key-Dependencies, published in Proceedings of the Third Aus-
tralasian Conference on Information Security and Privacy (ACISP’98),
July 1998 [126].

This chapter is focused on the difference between the will to do some-
thing, and ability to do so; the will and ability to take necessary security
precautions in particular. The rather long Section 6.2, is concerned with
the removal of private information. We discuss deleting information
stored in files in Section 6.2.1, and closing communication channels in
Section 6.2.2. Concluding remarks can be found in 6.3.

6.1 Introduction

To be worthy of trust, one has to be both honest, and be able to do
what one is trusted to do. The latter might be harder than the former.
As an example of the difference between will and ability, consider sign-
ing a document. When the document is presented on paper, and the
signature is expected to be written with a pen, the setting and modes
of failure are simple to understand, and it is reasonable to expect that a
signature is trustworthy. It is unlikely that any attempt to disavow a sig-
nature on technical grounds will succeed; a statement such as “I wrote

79

80 Intent and ability

10 but the pen changed it to 20” seems silly. It is also worth noting that
if a signature is valid, it has been written by the “owner”; a valid signa-
ture created by someone else is a contradiction in terms. However, in a
setting where programmable devices and public-key encryption makes
up the infrastructure (rather than pen and paper), assuming a division
between will and ability is far from silly [65]. For starters, one can ask
what constitutes the document: The file that contains it, or the render-
ing of the document on a screen. In addition, it is no longer the case
that a valid signature must have been created by the “owner”, as the
signature is based on knowledge rather than ability.

Understanding whan can go wrong can be a difficult task, see for
example [120, 8, 7].

6.2 Closing a Session

In principle, any message that flows through a communication network
can be recorded by eavesdroppers. Recording a message implies that
the contents of the message can be revealed at any later time, even
after both the sender and the intended receiver of the message have
destroyed their copy. The contents of a message cease to exist when
no copy of the message exists in the system. It is obvious that two
communicating partners are unable to enforce that the messages ex-
changed between them cease to exist. If, however, the messages were
encrypted, discarding the encryption key will efficiently place the con-
tent of the messages out of reach, which is most cases will be sufficient.
If the key is discarded by all participants, we can regard the session as
properly closed.

Distribution of session keys among communication partners is a task
that is accomplished using authentication protocols. A closer look at
such protocols reveals, not surprisingly, that many are constructed in
such a way that the session key is conveyed to the parties by means
of messages. If the session key has been sent in a message, encrypted
using some long-term key, then the session key does not cease to exist
before the long-term key is destroyed. The term dependency will be
used to describe the relationship that comes into existence between
keys, when one key is encrypted by another, e.g., when the session
key is encrypted by a long-term key. The effect of key-dependency is
that the long-term secrecy of the session depends on the secrecy of the

6.2 Closing a Session 81

long-term key. It also influences the quality of the session key. The
longer a long-term key is in use, the higher the risk of compromise, and
the session key is exposed to the same risk through the dependency.
When a key-dependency arises from a protocol the assumption that a
key is secret is transformed into an assumption that the key will remain
secret. Thus, the protocol alters the assumptions, or, the way by which
the assumptions are used, alters them.

Consider the Needham-Schroeder protocol outlined below:

Message 1 A→ S : A,B

Message 2 S→ A : {KAB, B, {KAB, A}KBS
}KAS

Message 3 A→ B : {KAB, A}KBS
, {A,N}KAB

Message 4 B→ A : {N+ 1}KAB

The protocol description is slightly simplified, see [99] for more details.
In the protocol, the session key KAB is sent in messages, encrypted

with both KAS and KBS, in Messages 2 and 3, respectively. When, as
here, a short-term key (KAB) is encrypted with a long-term key (in fact
two keys, both KAS and KBS), a dependency is created between the
short- and long-term keys. The implication is that the session based
on KAB is not properly closed before all the three keys KAB, KAS and
KBS have been discarded. The secrecy of the session does not solely
depend on the session key (which are under the control of the clients)
but also on the long-term secrecy of the keys KAS and KBS. The long-
term privacy of A and B thus rests on the honesty of S as the protocol
is in progress (e.g., S discards KAB as soon as Message 2 has been sent)
and the management of S after the protocol is terminated. Or, in other
words, in addition to the traditional assumptions made on the quality
of the cryptographic tools, assumtions must also be made about future
events (the management of S).

6.2.1 Removing a file

If a session is kept open (in the sense discussed above) because the
key is stored in a file at one of the endpoints, the session can not be
considered closed before the file has been deleted. However, properly
deleting a file might be quite hard.

One of the main objectives of a file system is to hide details of phys-
ical storage, and users are not (in general) concerned with which phys-
ical disk block that actually was used to store data. However, if the user

82 Intent and ability

wants to firmly delete a file he must ensure that the physical disk blocks
on which the file is stored, are properly overwritten. It is well known
that deleting the name of the file does not remove the contents of the
file. On some systems, MS-DOS (systems derived from it) in particu-
lar, files can simply be “undeleted” and the entire contents recovered.
On more sophisticated systems, such as UNIX, this is not the case, and
more effort is required in order to recover data from a deleted file. In
both systems the chances of success decrease with time, as measured
in operations that modify the file system; the details are left out for
brevity.

All this is well known, and quite some effort has gone into design-
ing software helping users to (try to) discard their private data before
the files is deleted. In particular, it is also well known that overwrit-
ing the original data with zeroes is insufficient in systems that provide
compression as a means to increase the effective size of disks, see, for
example [29]. This is so because a series of zeroes will usually com-
press better than the original data it was supposed to overwrite. The
new version of the file is thus smaller than the old one, and (the end
of) the original data is left unaltered on the storage medium when the
file is deleted. Subsystems such as compression are usually designed
with great care and with compatibility in mind, and their presence can
not reliably be detected by applications. Hence, the utmost care must
always be taken. To this end, programs such as PGP (see Section 2.4)
write random data when overwriting, based on the fact that random
data is not (significantly) compressible.

Most file systems, among them are notably the UNIX FFS [90] and
MS-DOS, will reuse the physical blocks originally assigned to a file. It has
been shown that a substantial performance gain can be achieved by us-
ing a log structured file system (LFS) [111]. LFS obtains its performance
by lazy garbage collection and by avoiding seeking for disk blocks. The
key issue is that when data is written to a file it is always written to a
physical location on the disk that optimizes the performance of the file
system. The functionality of reclaiming old disk blocks is performed
when needed.

In LFS, it is not possible to overwrite data in a file because new disk
blocks are always allocated. Although no file system API guarantees
that the same physical disk blocks will be used, on many systems this
can be assumed. On LFS, the opposite is true.

From a situation where the user could quite safely assume that the

6.2 Closing a Session 83

original data would be erased by overwriting, the assumption on LFS

is that the data almost certainly remains on disk (although outside the
file system proper). This change is important, but can not be noticed
by users that do not possess considerable insight into the workings of
their system; most users are unaware of how their file system is imple-
mented. Furthermore, this change is not detectable by tools the user
might rely on, and a change in systems software can significantly alter
the usefulness of users’ tools to protect their privacy. Users in systems
with LFS are particularly vulnerable because they are unable to remove
data from their file system.

Which file system is employed in a computer is only one of countless
many implementation issues relating to security. The most important
aspect is that security to a large extent becomes dependent on imple-
mentation. Which, again, implies that the gap widens between the will
to do “the right thing” and the ability to actually do so.

Backup

If encryption keys are stored in files, and backup have been made, prop-
erly deleting the key becomes even harder. Related to backup, special
care must also be taken regarding public keys and their secret coun-
terpart, especially when RSA and similar systems are used. In RSA, the
secret key has two purposes: To decrypt messages encrypted by the
public key, and to create digital signatures. That is, the same key is
used both as a decryption key and signature key. The problem is that
there is good reason to back up the decryption key, for example in or-
der to inspect security logs at a later point in time. But there does not
seem to be good reasons to back up the signature key without taking
precautions to safeguarding it.

In our view, backup and similar system-related security threats are
best dealt with by making the TCB as small as possible. To that end,
we have designed into FR a strict separation of the TCB of encryption
keys and data, making it possible to have different TCB on a per file
basis (see Chapter 5 for details). Basically, this is an argument for the
usefulness of a TDA.

84 Intent and ability

6.2.2 Analyzing dependencies

We consider it harmful that sessions can not be closed solely by the par-
ticipants. In fact, we believe each and every participant should be able
to close the sessions in which he participates. Under the assumption
that all participants are honest, protocols should have the property that
any session closes properly.

We have developed methods to analyze protocols with this in mind.
The central idea is to model the problem of locating key-dependencies
between keys as determining the connectivity of a directed graph. More
precisely, a graph describing a key distribution protocol contains nodes
representing either data or transformations. Edges leading to datum
nodes represent dependencies while edges leading to transformation
nodes represent input to the transformation. The graph can be in-
spected in order to detect key-dependencies that render sessions open.

Modeling key-dependencies as edges of a graph is closely related
to the methods described in [57], where a graph is built to detect the
weakest (shortest) path between passwords that can be guessed (or
text that can be verified) and a session key. Here, a similar approach
is used to detect key-dependency properties in authentication and key-
distribution protocols.

The set of nodes in the key-dependency graph G is defined as fol-
lows:

N1. Graph G has one node for each message, for each message com-
ponent, and for each key necessary to decrypt the message. For
instance, if message m = 〈x, y〉 is considered, then G contains
nodes for m, x and y. Moreover, if a conventional cryptosystem
and the message m = msg{x, y}k are considered, then G contains
one node for the message m itself, one node for each message
component (i.e., one for x and one for y), and one node for the
key k. Similarly, if a public-key cryptosystem and the message
m = 〈{x, y}k〉 are considered, then graph G contains one node
for each message component, x, y, one node for the message m
itself, and one node for the private key k−1 (the decryption key
corresponding to the public encryption key k).

N2. The graph G has one node for the computation that a principal has
to perform in order to obtain the key (or other material) on the
material received through messages, in its clear-text form, or lo-

6.2 Closing a Session 85

cal information1. Moreover, the graph contains one node for each
argument of the computation and one for the result. For instance,
if the computation x = f(x1, . . . , xn) is considered, then graph G
contains one node for f, one node for x and one node for each
xi, i = 1, . . . , n.

Notice that by N1, if a graph is built from two messages containing
the same datum, e.g., the messages m1 = 〈a, x〉,m2 = 〈b, x〉, the re-
sulting graph will have five nodes (m1,m2, a, b, x) as x is one datum
transmitted twice.

The set of arcs in G is defined as follows

A1. Letm be a message with n components,m = 〈m1, . . . ,mn〉. Then,
graph G contains one arc from m to each mi, i = 1, . . . , n.

A2. Shared key encryption m = {x}k is characterized by a pair of arcs,
the one from m to x and the other from k to x. Public-key en-
cryption can be characterized similarly: if m = {x}k is considered,
then graph G contains one arc from m to x and one arc from k−1

to x.

A3. If a computation x = f(x1, x2, . . . , xn) is considered, then graph
G contains a set of arcs as follows: one arc from every xi to f,
(i = 1, . . . , n), and one arc from f to x.

For instance, the message 〈A,B, {X}K〉, where K is a shared key,
yields the following graph. Each edge is labeled with the rule that
applies to it.

After the graph has been constructed according to the rules N1–N2
and A1–A3, it is reduced using the following rules.

1This computation is of course different from the computation that a principal has
to perform in order to build up a message.

86 Intent and ability

R1. For each distinct path from any node corresponding to a long-term
key to the session key, mark all nodes on the path.

R2. Remove all unmarked nodes.

The result is that information about key-dependencies is transformed
to edges in the graph.

6.2.3 Examples

In this section five well-known protocols are analyzed by means of the
method described in the previous section. As will be shown, these pro-
tocols give rise to a varying degrees of key-dependencies.

Wide-Mouthed-Frog Protocol

First the Wide-Mouthed-Frog protocol [27], a relatively simple protocol
which involves three parties. In this protocol, the two parties A and B
each have a secret key, shared with the authentication server S, KAS
and KBS respectively. This protocol consists of only two messages.

Message 1 A→ S : A, {TA, B, KAB}KAS

Message 2 S→ B : {TS, A, KAB}KBS

When following the procedure outlined above, the following graph is
obtained:

6.2 Closing a Session 87

The two messages that were sent have been framed for clarity. In
addition, each edge is labeled according to the rule that applies to it.

The long-term keys are KAS and KBS. Applying the rules R1–R2
yields the following graph:

The graph shows that key KAB depends on either one of two other
keys, KAS and KBS. Thus, knowing either of the latter two will make it
possible to recover KAB, provided that the attacker has a recording of
the protocol and the session. Consequently, in order to close a session
based on KAB, both KAS and KBS must be discarded. However, both
keys are known to S, which implies that A and B do not control when
the session will be closed.

Node-to-node channel

Consider the protocol to set up a node-to-node channel between the
two nodes A and B in a distributed system [85]. The essence is that
both A and B invent a random number, the numbers are exchanged,
and the session key is constructed as a function of them. A and B are
assumed to have public keys KA and KB, known to the other party, and
both are competent to invent good random numbers. The protocol is
slightly simplified, see [85] for a complete description.

Message 1 A→ B : {JA}KB

Message 2 B→ A : {JB}KA

The session key KAB is then found as a hash of JA and JB. Building the
graph, removing the nodes that are marked public, and let h() represent
the hash function, produces the following graph:

88 Intent and ability

When inspecting this graph, it becomes clear that the session key
depends on two values, which again depend on two different keys. In
particular, a single edge, not two as in the Wide-Mouthed-Frog protocol,
leads to the session key. In order to find KAB one must find both J’s
and they each depend on different keys. Thus, to decrypt the session
protected by KAB both K−1

A and K−1
B (assuming both J’s are discarded)

need to be compromised.
It can be concluded that the node-to-node channel protocol achieves

a better result than the Wide-Mouthed-Frog protocol. The main reason
is the way public-key cryptography is used. The public key in a public-
private key-pair gives rise to a one-way channel leading to the holder of
the private key. The one-way property implies that if A sends a datum
to B through the channel represented by B’s public key, and A dutifully
discards the datum, there is no way to regain the datum without B’s
participation. This is used in the protocol by sending parts of the key
on the unrelated channels. It can also be seen as a separation of the
issues of authentication and conveying a secret.

SSL 3.0

SSL is a protocol designed to be used in a variety of circumstances and
with a variety of security environments, and with a variety of cryp-
tographic tools. This protocol is widely used, in particular by Web-
browsers. SSL can be used in settings where both the client and server
have public keys and mutual authentication is desired. With some sim-
plifications (for example, only one method for hashing), the protocol

6.2 Closing a Session 89

can be described as follows:

Message 1 C→ S : C,NC, TC
Message 2 S→ C : NS, TS, KS, {NC}K−1

S

Message 3 C→ S : KC, {P}KS
, {H(M+H(Z+M))}K−1

C
,

H(M+H(YC +M))

Message 4 S→ C : H(M+H(YS +M))

In the protocol description, TS and TC are the time stamps, NS and NC
are 28-byte nonces, and KS and KC are the public keys of the server and
client, respectively. The keys are sent together with X.509 certificates
making claims on the user-key binding [32]. P is the 46 bytes called
“pre-master-secret”, the function H is MD5 [107], M is the master-
secret derived from the pre-master-secret by combining the pre-master-
secret with NC and NS plus some padding, and hashing the result. Z is
the concatenation of Message 1 and Message 2, YC is the concatenation
of Z and the number 1129074260, YS is the concatenation of Z, Mes-
sage 3 and the number 1397904978. In essence, the parties sign each
others nonces.

When processed according to the graph reduction rules, the follow-
ing is obtained:

Inspection of the reduced graph reveals that the secrecy of the mas-
ter secret depends solely on the secrecy of K−1

S , which again implies
that the client is unable to close the session based on the master se-
cret. Although SSL is based upon public-key cryptography, its behavior
with respect to key dependencies is weaker that the Wide-Mouthed-
Frog protocol. In the latter, the “users” have the possibility to close the
session by changing the key they share with the server. In SSL, this is
not possible.

At this point it it warrant to point out an essential detail: It is true
that a malicious server can hold on to session keys forever. This is
captured by the fact that the client must trust the server, and that the
server is part of the client’s TCB. However, trusting the server now has
important implications in that when a connection has been set up by
means of SSL, the server has to be trusted also in the future.

90 Intent and ability

Demonstration Protocol

In [57], quite a few protocols are described, and in the following, the
Demonstration Protocol is studied in more detail. It consists of eight
messages sent between two principals A and B and a security server
S. The last three messages form an exchange of nonces for verification,
and are left out of the protocol description:

Message 1 A→ S : {A,B, na1, na2, {ta}KAS
}
KS

Message 2 S→ B : A,B

Message 3 B→ S : {B,A, nb1, nb2, {tb}KBS
}
KS

Message 4 S→ A : {na1, k⊕ na2}KAS

Message 5 S→ B : {nb1, k⊕ nb2}KBS

The symbol ⊕ denotes the bit-wise exclusive-or operation, the datums
prefixed by n’s are nonces, the key KS is the public key of S, the keys KAS
and KBS are shared between A (and B) and S, and k is the session key.
The protocol is slightly simplified—confounders are left out—see [57]
for the details. In the graph, the nodes denoted with ⊗ represent a
computation as required by N2. In this protocol, the computation is
in fact bit-wise exclusive-or, but regarding it as a general computation
does not alter the graph.

The algorithm produces the following graph:

Observe that there are two edges leading to k, indicating that k de-
pends on two sets of keys. However, the secret key K−1

S is a member of
both sets. The outcome from the node-to-node protocol is better in this
respect. Furthermore, all endpoints leading to k in the graph (KS, KAS
and KBS) are known to S and neither are discarded after Message 5 has
been sent (after which S no longer takes part in the session). On the
other hand, compromise based on KA (or KB) alone is not enough.

6.2 Closing a Session 91

Compared to the Wide-Mouthed-Frog protocol, the outcome is bet-
ter because compromise of one of the user’s key is not enough to endan-
ger the privacy of the session. The outcome is better than that of SSL,
in that if A and B both change the key they share with S, the session is
closed, while in SSL the session key depends on K−1

S alone.

Encrypted Key Exchange

From the previous examples, it is clear that key-dependencies arise
when session keys are encrypted with long-term keys. Using a fresh,
temporary public key avoids the key-dependency issue. As an example,
the Encrypted Key Exchange [18] is described.

Let A and B be the two parties, P a shared secret, Kt a public key
with K−1

t as the secret counterpart, and KAB a session key. The pro-
tocol consists of five messages, of which the last three are for mutual
verification of the key; they are left out. The first two messages are:

Message 1 A→ B : A, {Kt}P
Message 2 B→ A : {{Kab}Kt

}
P

The protocol gives rise to the following graph:

Reduction results in the following graph:

92 Intent and ability

First, notice that the secret, temporary, key is not included in the
graph because it is not a long-term key. Second, inspection of the graph
reveals that holding key P is not sufficient to obtain the KAB because it
comes to depend also on the key K−1

t , which is temporary. The graph,
in its reduced form, captures this fact by depicting a path from P to
KAB which contains encrypted material whose decryption key is not de-
picted. In other words, the graph captures the essence in the protocol,
that shared and public key encryption complement each other.

6.2.4 Discussion

The analysis of five protocols reveals a clear relationship between the
use of shared-key encryption and key-dependencies. Without a pre-
arranged secret channel it is hard for participants to verify that a session
key indeed is correct [56]. This becomes evident in protocols based
on shared keys, where the session key must be exchanged over the
shared channel as there is no other alternative. In such settings, a key-
dependency is inevitable. This can be argued for as follows: Assume
two peer principals wanting to communicate, and exchange a session
key, by the means of a security server. Based on the messages sent, B
must decide on the same session key as A. This is only possible if A can
assume that B’s actions are deterministically based on the input (the
messages sent by A and S). If C knows the algorithms that B follows,
and can read the channel to and from B, C will be able to achieve the
same result as B. Thus, it is impossible to avoid key-dependency in a
system solely depending on shared key encryption. The above analysis
verifies this.

It can be argued that a dishonest participant can hang on to a session
key forever, thus preventing any channel from closing properly. This is
true, but this scenario violates the assumption that the participants are
honest.

By considering how dependencies arise it becomes evident that to
improve the situation with shared keys there must not exist an unen-
crypted path in the graph from long-term keys to the session key(s).
That is, a cryptographic channel must exist that is not transmitted. To-
day, public key cryptography is the most common choice for such chan-
nels, but more exotic possibilities are possible (see for example [94]).
However, as became evident in the analysis of SSL, protocols using pub-
lic keys also gives rise to key-dependencies if not applied with care.

6.2 Closing a Session 93

In systems based on public key cryptography, and where a trusted
third party is used to ease authentication, one can separate the issues
of authentication from the exchange of a session key. In particular, one
can leave it to the users to handle the latter. This approach, for more
or less this reason, is taken in [85, Footnote 10] (and in [146]). When
the server is not engaged in issuing the session key, no key-dependency
arises on keys known to the server. It is, however, regarded as good
engineering practice to involve a server in this process, see [27] and [3,
example 11.2]. With the case of TDAs with few resources, this practice
may well come into fashion again, especially if smartcards are used as
TDAs.

Whether a protocol is secure or not is not only undecidable (see
page 35 for a discussion), but obviously depends also on how “secu-
rity” is defined [64]. Dependency between keys has not been seen as a
problem in theoretical models of security, hence can not be detected.

Although the protocols analyzed in this section were not designed
with forward secrecy in mind [38, 62, 21]. it is still important to point
out that key-dependency vulnerabilities do exist in them. The design
of SSL, for example, is considered sound for authentication purposes,
but as shown in this section, can be vulnerable to attacks exploiting
key-dependencies.

Dependencies do not enlarge the TCP. However, protocols that give
rise to dependencies alter the semantics of the rôles the principals have
in the TCB. It is particularly troublesome that the protocol alters an as-
sumption about the world as it is (that a principal is honest) into an as-
sumption about the future (that the principal will remain honest). This
is very different from beliefs about the secrecy of a key. A key-exchange
protocol can be poorly designed (or implemented) and reveal secrets,
the protocol will make an assumption invalid (and thus effect every-
thing that depends on it being true). Seen in the light of BAN and GNY,
the findings in this section can be viewed as yet another aspect of the
semantics of the logics [5, 133]. The usual goal of semantics is to make
it possible to see the logic as part of a system, and statements proven
to be true in the logic has some (more or less) well defined aspect of
truth in the real system. In fact, having only an intuitive understanding
of the semantics directly opposes the usual goal of having semantics at
all [132].

94 Intent and ability

6.3 Conclusion

This chapter has demonstrated engineering problems (deleting a file),
and some problems related to design (dependency). Interesting enough
per se, but they are merely pieces of a larger picture. In creating a
secure system, the design and engineering must match. Designing a
complex system does no good if it is impossible to realize the system
without making horrendous assumptions; as shown even assuming that
the contents of a file can be properly deleted is an assumption one
should not make without careful consideration.

Furthermore, protocols themselves alters underlying assumptions
(from being secret to remaining secret). This finding could have been
predicted based on the discussion of the logics for analyzing such pro-
tocols in Chapter 3. Both assumptions and predicates are stable, in that
once they have become true they remain true.

Taken together, the two main results in this chapter points towards a
TCB which is as small as possible. Having as the TCB only a TDA would,
for example, render void the problem of deleting files. The next section
will show just how one can integrate a TDA into a distributed system to
achieve better security.

Chapter 7

Offline Delegation

This chapter is based on a published paper: Arne Helme and Tage
Stabell-Kulø: Offline Delegation, in Proceedings of the Usenix Security
Symposium, August 1999 [69]. The idea has been presented on several
occasions [66, 67, 68].

When private machines are incorporated into distributed systems, pri-
vate control over private data becomes an issue which should be solved.
Rather than solely protecting centralized resources from unauthorized
access, protecting the interests of the individual also becomes neces-
sary. In particular, users will want to decide whom can access their
data, and when. Or, in other words, they want to be the sole authority
over authorization for access to his data. As described in Section 5.3.6,
FR has machinery built in that enables the user to authorize anyone by
providing him with the correct encryption key. In this case, the user has
taken it upon himself to authenticate any access; this would then be a
question of trust. In this chapter we will stude a slightly more complex
setting: one where the user has instructed FR not to divulge any file
without requesting proper credentials. Assume furthermore that the
user is off-line, but has his TDA at hand: How can he convey credentials
in this situation?

The basis for our interest in this particular problem, is that armed
with a TDA, each and every user can challenge the centralized model
of authentication and access control by taking control of his own re-
sources. In essence, a TDA provides the user with the possibility of
creating his own TCB; as should be possible, according to the open-end
argument. FR is in no position to deny the user the freedom of delegat-

95

96 Offline Delegation

ing authority whenever he desires.
This chapter examines a problem that is rather specific to the blend

of mobile computing and security: how to handle the circumstances
when there is no connectivity between user (and his TDA on one side)
and the infrastructure on the other, but the user nevertheless have a
desire to make security-related decision or action. In particular, how a
certificate can be conveyed when (electronic) communication can not
be established.

7.1 Introduction

The setting is one with FR, which does not require that those request-
ing access to files are registered as users in any way. Credentials should
make FR believe that the file owner (or someone speaking for him) is
the principal requesting access. An integrated part of FR’s design is that
authority over files can be delegated freely. Generally speaking, a cer-
tificate names a file and a user, together with an access right (read,
write or both), and a time of expire. The syntax and semantics of cer-
tificates will be discussed in detail below.

Assume that Alice and Bob are having a conversation over the phone.
Alice decides to grant Bob access to a file of hers. The problem is, how
can she convey a certificate to him as part of the conversation with-
out compromising her own security. One solution is that Alice creates
a delegation certificate off-line and conveys it orally to Bob. Bob later
presents the certificate to FR when requesting access to the file in ques-
tion. If FR deems that Alice created the certificate and it is (still) valid,
access will be granted.

Making off-line delegation possible requires that two distinct prob-
lems are solved. First, it must be possible to generate a valid certificate
by means of a TDA without having access to FR. Second, it must be pos-
sible to convey the certificate orally. The latter rules out every binary
representation of certificates in so far that it is unlikely that anyone will
be able or willing to read hundreds of digits over the phone. Similar
arguments also rules out the use of digital signature schemes relying
on very long signatures (RSA, for example, with 1024–2048 bits in the
signature) The problem is denoted “off-line delegation of access rights”
(initially described in [66]).

7.2 Design requirements 97

7.2 Design requirements

Design of an off-line delegation mechanism must carefully balance trade-
offs concerning convenience and availability against security. This sec-
tion explores the design space, and in particular requirements for the
delegation certificates.

A solution must fulfill a few overall design criteria:

1. A delegation (i.e. a certificate) should not enable any principal to
impersonate the delegator or delegatee.

2. The credentials must form valid and meaningful access rights. In
particular, all objects (principals, machines and files) must be un-
ambiguously named.

3. Certificates must be secure in the sense that they should not pose
a security risk; the cryptographic tools that are used should have
sufficient strength. Hence, the authority granted by a certificate
should not be transferable, and a certificate should only be valid
once.

To ease the task of orally transferring access rights the following
strategy is used. In essence, of all the information in a typical certifi-
cate structure only the digital signature constitute binary data. Because
delegation certificates contain a wealth of information that easily can
be exchanged orally, such as dates, file names, domain names, and so
on, the digital signature is only a fraction of the data that has to be
exchanged. In this scenario, the key issue is to simplify and ease the
exchange of the signature bits.

Consider again the scenario involving Alice and Bob. She tells him
which file it is, where it is located, the access rights she wants to dele-
gate, together with the certificates’ creation and expire times. On her
TDA, Alice builds the certificate and signs it with her private key. She
then reads the actual signature bits to Bob. Bob is now in possession of
sufficient information to reconstruct the certificate on his TDA.

Later, Bob can submit the certificate to the file server together with
credentials verifying his own identity. Upon receiving the certificate the
file server will verify that it is signed by Alice, that it is Bob who is is-
suing the request, that the delegated access rights do not violate any
overall file server policy, and, if all this is true, send the reply back to

98 Offline Delegation

Bob. Notice that we are explicitly not discussing the case where com-
munication can be established with FR as many other solutions exists in
that case.

In order to delegate access rights based on electronically generated
certificates, the amount of data that needs to be exchanged is criti-
cal. For example, it is awkward to convey numbers in the order of
1024–2048 bits as part of a conversation between humans. When us-
ing public-key cryptography, it is essential that the data to be exchanged
can be minimized as much as possible. A challenge is thus to use a
digital signature scheme that has small signatures. Decreasing the sig-
nature length means to either use smaller key components or to use a
cryptosystem with a denser key space. We have opted for the latter, and
chosen a cryptosystem based on elliptic curves.

In addition to the design requirements mentioned above, it must
be ensured that each certificate that is generated is unique. Rather
than having a serial number in a certificate, it is an assumption that it
takes more than one second to generate a certificate. Thus, with a one
second granularity on time stamps, including the time of creation in the
certificate will ensure uniqueness among certificates from a particular
user.

In Chapter 4 we claimed that the open-end argument is applicable
in settings where a TDA is “included”. The design of a distributed (file)
system such as FR is a typical example. The file system should take into
consideration that users (with TDAs) will want to make access-control
decisions over their resources—files in the case of FR—also when it is
inconvenient for FR.

7.3 Certificate creation

Basically, the owner creates a digital signature on data that vouches for
his delegation of access rights for a particular file to another user. This
signature, together with the contents of a matching certificate, gives
the delegatee access to the file. Thus, the certificate components that
easily can be conveyed orally are the following:

– The names of the file, the owner and the requester,

– Time of creation and expire of the certificate (where the time
stamp by assumption is unique),

7.4 Implementation details 99

– Specification of delegated access rights,

The oral delegation, thus, ends with the exchange of the signature
bits that, together with the other information exchanged, enables the
requester to (re)construct a machine readable representation of the del-
egation certificate. These certificates, obviously, must be readable not
only by computers but also by humans. To facilitate this, certificates are
encoded in the advanced format from SPKI [108].

In short, to access a file the requester signs the delegation certificate
and transmits the result to the file server.

Message 1 A→ B : [A,B, F,AC, T, S]KA
(= X)

Message 2 B→ S : [B, S, X]KB
Message 3 S→ B : [S, B,data]KS

In the protocol description shown above, A and B represent the users
Alice and Bob, S is the file server, F is the name of the file in question,
AC is the delegated access rights, and T is the time stamp. K−1

A is the
private key belonging to A. Message 1 (or X, in short) is the dele-
gation certificate. The field data represents the effect of the invoked
operation—typically the result of a file operation request—and is the
file data returned to the file requester. The protocol does not distin-
guish between conventional (networked) and oral transfer of the first
message—in both cases the same information is presented to the server
in Message 2.

7.4 Implementation details

The off-line delegation mechanism is hosted on the 3Com Palm Pilot
PDA and on UNIX workstations. In addition to FR itself, the implementa-
tion consists of a library for cryptographic functions, a library to parse
and generate SPKI-like objects, a library that implements PGP, and a
graphical user interface running on the TDA.

We have made an prototype implementation of off-line delegation
The interesting part of an implementation is whether an a prototype,
on contemporary hardware, will perform well enough for the concept
to be useful. It is, in practice, very hard to estimate the time it will take
to run complex algorithms such as the creation of digital signatures. In
providing an implementation, our aim has been to establish that the

100 Offline Delegation

solution does not introduce an intolerable delay, or overly complicated
procedures for the user. As a contemporary PDA, we have chosen the
Palm Pilot.

In addition to necessary modifications to FR itself, the implementa-
tion consists of a new library for cryptographic functions, a new library
to parse and generate SPKI-like objects (to be discussed below) and a
graphical user interface running on the TDA. In addition we have writ-
ten software to obtain the full functionality of PGP in the form of a
library. This library was subsequently ported to the PDA1.

All keys, protocol messages and delegation certificates are encoded
as S-expressions using the formats described in the SPKI documenta-
tion [108]. As an example, here is the first message in the protocol.
It contains the delegation certificate and is encoded in SPKI as shown
in Figure 7.12. It is worth noting that the SPKI encoding shown in the
figure is the format we choose (see [69] for details), and not the more
modern (and standardized) format found in [44] (see Section 3.4 on
page 46 for a discussion).

The delegation certificate contains a 256 bits Nyberg-Rueppel signa-
ture which is the only piece of information in the certificate that cannot
easily be transferred orally; notice that the Object-Hash can be gener-
ated at the receiving side as well as on the sending side.

The crypto library provides functions to create digital signatures on
data and to operating system specific functions to handle cryptographic
data/contexts in different operating system environments. The elliptic-
curve crypto implementation is based on the algorithms for fast opera-
tions in finite fields described in [145]. The implementation has been
tuned to fit the limited processor and memory resources on the Palm
Pilot platform. Currently, it uses a finite field of order GF(136) with
fast operations on element in a smaller subfield of order GF(8). The
order of the fixed point on the curve is a 241 bit prime number. This
yields Nyberg-Rueppel scheme digital signatures with a total length of
256 bits for both the r and s components of the signature.

The bandwidth of a conversation is low. To that end, the core of
an off-line delegation system is thus the dual ability to generate a valid
certificate on a TDA and making it “readable” in a form which is simple
to both “transmit”, and “receive”.

1This port was performed by Per Harald Myrvang, as part of his M.Sc. thesis.
2Several years after our implementation effort, two RFCs were issued that stan-

dardized the format of certificates. The language is now known as SPKI [43, 44].

7.4 Implementation details 101

(FR-Offline.Message1:

(Protocol-version: FR--Offline-v1.0)

(Offline-Delegation-Cert:

(EC-Signature:

(Algorithm: ECNR-with-SHA1)

(Signing-Key: |B3ZbHXKyBwQ=|)

(Object:

(Delegate-From: Arne Helme)

(Delegate-To: Tage Stabel-Kulo)

(File: /etc/passwd)

(Expire: 1999-01-08T14.33.12.000+0000))

(Object-Hash: |0w3m2YI6xThw9yO6fHyvWg==|)

(Galois-Field: #88#)

(R: |1ebYMZ4iVpxQEc8VOfaZKQ==|)

(S: |RbQ5uLLfd9+MbnqPphQl/A==|)

)))

Figure 7.1: Encoding of a message in SPKI.

In general, making a certificate consists of first entering into the ap-
plication the necessary information, and then generate it. The following
information is needed:

Filename: It is the users’ sole responsibility to ensure that filenames
are unique within the scope of a server; the name of the file is
prefixed by the name of a server.

Delegatee: As in all systems where users are represented by their pub-
lic key, names must be unique within a system. Or, more precisely,
the name appearing in user-key certificates must be unique.

Expire: Certificates should expire. In order to ease the process of en-
tering date and time, calendars are used to find a date (with to-
day suggested as default). The granularity in the time stamp is
one second; as described earlier this still ensures uniqueness. Fig-
ure 7.4 shows how the time is entered into the application; the
user taps the boxes with the stylus. There is an similar form for
entering the date.

Figure 7.4 are screen shots of the applications running on the PalmPi-
lot. The images shows how general information is entered into the

102 Offline Delegation

(a) Setting the time (b) Information

Figure 7.2: Elements from the user interface: forms that are identical
on both the sending and receiving side.

(a) Sending (b) Receiving

Figure 7.3: Sending and receiving a certificate

application.
The idea is that while Alice enters information into the fields she

talks to Bob; Bob enters the same information. The software has been
designed to be used this way, that is, the order in which information is
entered when certificates are created is matched on the receiving side.
By going over the fields together, they build up the certificate. When
she has entered information, Alice will sign the data with her private
key, generating a certificate.

As explained above, the signature is a string of 256 bits. On the
sending side, the bits are presented to Alice as 16 4-digit hexadecimal
numbers. Screen shots of the application are shown in Figure 7.3(a).
Notice the checksum given in the right hand column; it facilitates a
crude error detection scheme. She can now read them to Bob, one
group at the time.

When Bob receives the numbers, he needs a means to enter them
as fast as Alice reads. To facilitate this, a dedicated form is presented.

7.5 Conclusions 103

By tapping on the screen of the TDA he is able to enter data (“receive”
as it were). The design is such that users can receive fast enough for
the system to be usable. See Figure 7.3(b) for a signature that has been
partly received.

The checksum is automatically calculated as data is entered. Al-
though only a proper verification of the signature can determine whether
it was properly transferred, the checksum is used to give Alice and Bob
some confidence.

FR was augmented with the UNIX version of the crypto library, and
the elliptic-curve public keys were added to the access control lists. The
format we choose, shown in Figure 7.1 is ad-hoc, because no standard
has yet emerged on the representation of elliptic curve parameters in
SPKI.

7.5 Conclusions

The single most intriguing issue with the concept of TDAs is the possi-
bility for each and every user to have a TCB which does not include re-
sources controlled by others. Keys and credentials can safely be stored
in a TDA. Private computers that are trusted can act on their owners’
behalf in conducting secure delegation of access rights. In the scenario
just described, FR is included in the TCB only when the file itself is in
question (because it is stored in FR). In particular, when it comes to the
usual usual question of binding a public key to a human and making
signatures, the TCB consists only of the TDA.

Each delegation certificate issued is assumed to be unique. Unique-
ness is guaranteed by numbering and the included time stamp pro-
vided by the user and by enforcing that at most one certificate can be
generated per second. The server uses uniqueness information when
updating the revocation list of a file to determine whether the same
delegation certificate has already been used.

Time stamps are used as an additional source of information for
revocation purposes. Because individual users can specify access poli-
cies, the correctness of the time-stamp encoded into each delegation
certificate depends entirely on this user’s ability to determine the cur-
rent time. However, time stamps are only used to catch up with old
certificates. In any case, using time to discard once-only delegation cer-
tificates is not entirely without risks (for a discussion, see, for example,

104 Offline Delegation

[55]).
Granting users the right to delegate access to their own resources

implies losing control over what constitutes a user. When the owner of
a file can grant access to whatever method of authentication he desires,
it is impossible for the system to guard against poor passwords, for
example.

The goal has been to show, in practical terms, which changes the in-
clusion of TDAs implies. In this case, no traditional concept of users are
longer possible, and a scheme based on requests appearing on channels
must be designed and implemented.

Chapter 8

Smartcard versus PDA

This chapter is based on two published papers. The method for se-
cure signing with smartcards has been published as Tage Stabell-Kulø,
Ronny Arild and Per Harald Myrvang: Providing authentication to mes-
sages signed with a smart card in hostile environment, in Proceedings of
the USENIX workshop on smartcard technology, May 1999 [123] and
Tage Stabell-Kulø: Putting smartcards to use in a user-centric system, in
Proceedings of the second ACM Symposium on Handheld, Ubiquitous
Computing, September 2000 [122]. Norwegian patent no. 20004206
has been granted on the novel method of augmenting smartcards.

This chapter is focused on what constitutes a TDA; the main question
is whether a smartcard can be used as a TDA, or if more powerful (and
usually larger) machines are necessary.

We consider the least we can require from a TDA: The creation of
digital signatures in an untrusted environment; a machine that can not
assist in signing data is merely a memory prosthesis, and not a TDA as
we envision it.

First, a method to create signatures by the smallest TDA possible
(the smartcard) is presented and discussed. It is argued that signing is
not a question of processing power, but rather of infrastructure. The
majority of such an infrastructure has been designed and build; the
implementation is discussed.

Our second approach is to augment smartcards with a display and
a keyboard, thus making the user able to safely communicate with the
card, that is, in effect making the smartcard into a more “traditional”
PDA. The problem is to construct a smartcard that conforms to the

105

106 Smartcard versus PDA

specifications (e.g., is still a smartcard) while holding a keyboard. A
suggestion of how this can be done is then presented.

8.1 Digital Signatures in Untrusted
Environments

In order to be trusted to be able to make trustworthy digital signatures,
a smartcard must be supported by some infrastructure outside the card
proper. Unlike many other classes of hardware, smartcards do not have
the ability to communicate securely with the user. Deprived of means
to keep the owner informed, the positive properties of smartcards are
difficult to utilize. In our view, to be useful as an extension of the users’
private sphere, a machine must at least have enough functionality and
resources to create trustworthy digital signatures (to speak for the user,
as it were). A less resourceful machine can merely act as a memory
prosthesis, helping the owner remembering addresses and phone num-
bers.

Smartcards are designed to be tamper resistant, and as such they
seem ideal as a minimal machine. However, trustworthy digital signa-
tures can not be created by smartcards alone, simply because the user
can not observe (and verify) what is given to the card for signing.

In the design of modern distributed systems, there are two forces
that pull in opposite directions. One is users’ desire to include comput-
ers into their private sphere, for a simple task such as keeping a diary
up-to-date or a more complex one such as keep digital money. The
other is users’ desire for privacy.

Systems that aim at reaching users in their private sphere must be
prepared to span more than one administrative domain. A crucial is-
sue in such systems is that it must be possible for them to uniquely
identify users. It must be possible for service providers (and others)
to determine from whom a request or statement originates. In fact,
we dare to say that any system, aiming at being ubiquitous or not,
in which users can not make proper identifiable statements does not
have a strong binding between human users and build-in concept of
a user. In particular, without deterministic identification of statements
(requests) charging for services becomes difficult.

Users have access to networking in most settings; both in friendly
environments (for example at home) and possibly unfriendly (an Inter-

8.1 Digital Signatures 107

net café). In order to be able to make identifiable statements also in
settings where the infrastructure is controlled by others, the user must
be able to make statements without having to trust the infrastructure.
A statement is some data, an ASCII string for example, accompanied by
a digital signature. It is the signature that sets statements aside from
other strings claiming to originate from the user. Public key technology
is but one mean to achieve signatures. In any case, a statement can only
be made on a trusted machine. This is so because a user can neither
verify a signature’s (cryptographic) validity, nor whether a signature is
on some data at hand.

It is fairly obvious that when the user is armed with a laptop-type
machine that he trusts, he can construct his message and sign it by
whatever means he prefers on the laptop. The TCB is confined to the
laptop itself. The signed statement can then be released to a possible
hostile environment for transport to its destination. After signing, the
statement can safely be disseminated because it is protected by some
cryptographic property. Denial of service is always possible, but any
alteration of the statement will be detected.

Not only laptops, but also most contemporary palmtop, such as the
Palm Pilot, can be used to sign statements; the performance of a palm-
top is not up to that of a laptop, but hardware with cryptographic func-
tionality can easily be added to most such devices. A palmtop would be
used in the same manner as a laptop: Show the string on the screen,
and create the signature. Conceptually, a palmtop is identical to a lap-
top in this manner. They belong to the same “class” of hardware, be-
cause each has both a screen and (some form of) input channel.

The smartcard belongs to a different class. The distinguishing aspect
is that a smartcard does not have a secure channel to (and from) the
user. In other words, there seems to be a conceptually important border
dividing the smartcard (and comparable devices) from “real” comput-
ers. In the context of security, a border between machines that can
securely cerate a digital signature, and those that can not, is an impor-
tant concept. For system designers, the mere existence of such a border
implies that systems which aims at including smartcards will ultimately
be less versatile than those that do not. It is apparent that in one sense,
what constitutes the border is the lack of a secure channel. When using
a smartcard, all messages to or from the card must pass through some
machinery, and this machinery (whatever it might constitute) can alter
the message at will. In other words, trusting a smartcard is in itself

108 Smartcard versus PDA

not enough to create a digital signature. Focusing on the convenience
of the smartcard, it is prudent to ask whether it is at all possible to
build an infrastructure to compensate for the lack of a communication
channel. That is, designing an infrastructure that spans any number of
administrative domains but makes no assumptions on the trustworthi-
ness of the terminal the user might be using when asking for a string to
be turned into a signed statement by his card.

The rest of this section is structured as follows: In Section 8.1.1 the
setting is described in more detail, and it is explained why smartcards
in themselves makes the user less autonomous. Then an online ser-
vice is described that, together with a secret number and a one time
pad, enables users to create digital signatures on strings. Based on the
method that is to be described, Section 8.1.3 contains a discussion cen-
tered around trust and trust relations. It is shown how a user by means
of the described solution can take control over his own signatures. Re-
lated work is discussed in Section 8.1.5.

8.1.1 Overview

It is difficult to produce a trustworthy digital signature on data in a
hostile environment, even armed with a smartcard that can create one
by means of some public-key technology within the card. To see why,
assume a user A sitting in front of a machine M with the smartcard
residing in a smartcard reader connected toM. If A wants to sign some
message X, he has no means to verify that M actually gives X to his
card; Neither can he prevent M from retaining his PIN, nor that M
presents multiple messages to the card to sign. The consequence is that
A can not use the card without trusting M just as much as he trusts the
integrity of the card itself. But if he trusts M, he could have used M
to sign rather than involving a smartcard in the first place. When cards
are used to create digital signatures, the card is normally used to ensure
that the user is under control (he must bring his card, and can only use
machines chosen by the owner of the system), rather than enabling the
user to build a versatile digital personality.

There are many settings where one desires to sign data with a smart-
card, where the environment might be hostile. For example a point-of-
sale terminal, or during a visit to an “Internet café”. Using a computer
laboratory at a university is another example. In general, any environ-
ment where one does not want to include the terminal in the TCB, for

8.1 Digital Signatures 109

whatever reason.
The problem is that there is no authenticated “channel” from the

card to the user. The card is unable to “tell” the user what it has been
asked to sign, and the user can not verify that the message X has been
received for signing; the problem is well known [1, 52, 148].

In general, data integrity relies on either secret information or au-
thenticated channels [93]. In other words, when using smartcards
without any authenticated channels, some sort of secret information
is needed. The user A is unable to encrypt for secrecy anything with his
smartcard without trusting M, because all messages to the card must
pass through M. Therefore, focus is solely on creating digital signa-
tures. That is, secrecy can not be obtained at all in this setting (unless,
as before, the user trusts the machine M, in which case the problem of
encryption becomes trivial). This is in itself an limiting factor on the
systems that can be build with smartcards.

The setting is that the user A has some data, an email perhaps, that
he wants to sign, using the secret key stored in his card without having
the key leaving the card. He would instruct the software running on M
to send the data to the smartcard reader, insert his card, and having the
signature returned in order to be attached to the email. The problem
is that M might give any data it desires to the card, and the card will
sign it. Unless A can verify public-key signatures in his head, he has no
means to judge whether M is trustworthy or not.

In fact, what might seem to be a single problem really poses three
distinct challenges:

1. How can A ensure that the correct data has been signed?

2. How can A verify that the signature is valid?

3. Is it possible for a third party to conclude that A has verified that
the correct data has been signed?

The last item is required if the signatures A makes with his card are to
have a non-trivial value.

Concerning the first question, only A knows the answer, because
only he knows what he intended to have signed; the fact that M also
happens to know is of no relevance because M is not trusted. The user
must thus be involved in the verification of the signature at the “mes-
sage meaning” level. Or, in other words, no solution to this problem

110 Smartcard versus PDA

can be envisioned without involving the user in some way, after the
signature has been created.

In a realistic scenario, the possibility of A verifying the signature
himself can be ruled out. This implies that a third party must verify
the signature. Such a third party should take the form of an online
service, in order to better enable the user to timely obtain an answer
the second question. This, however, raises a new obstacle: How can
this server, called S, communicate with A over a channel that provides
integrity? Our contribution is a working method to solve this particular
problem.

Turning now to the third challenge, it will become evident that A in
advance can sign a certificate that, together with the credentials created
during progress, enables others to conclude that the data indeed was
signed by A’s card, with A’s consent.

Our solution consists of three parts, an on-line service, a small one-
time pad (OTP) and a secret. An OTP is a perfectly secure method for
encryption. To see why, assume that Alice desires to send the message
{1, 2, 3, 1} to Bob. If they share the encryption key 5 (and the algo-
rithm is to add with the secret key), the encrypted message becomes
{6, 7, 8, 6}. It it obviously a problem that it is evident that the first and
last component are equal, and the first, second and third component are
sequential in the original “alphabet”; recall that any reasonable cryp-
tosystem should assume that the algorithm (addition in this case) is
known and only the encryption key (5) kept secret, see Chapter 2 for
details. A remedy would be for Alice and Bob to share a “pad” with
numbers (all of them secret), which reads {4, 5, 1, 7}, for example. Us-
ing the pad as key rather than the number 5, but still using addition as
algorithm, the encrypted message becomes {10, 6, 9, 8}; it is no longer
possible to know anything about the contents of the original message,
except the length. Furthermore, if a pad is only used once (hence the
name One-Time Pad), perfectly secure encryption has been achieved.
Without knowing the key (the secret pad) it is impossible to derive the
original message or key regardless of the computational power at hand,
assuming the numbers on the pad are truly random. To be precise:
There is no information in the encrypted data that can reveal neither
the key nor the original message [117]. The One-Time Pad is an old
invention, details can be found in [75, 93].

The scenario we have described can be pictured as shown in Fig-
ure 8.1. We will now describe the messages that constitutes the proto-

8.1 Digital Signatures 111

Figure 8.1: The protocol run

col, and in some detail argue for content of each message.

– The machine M is not trusted. Thus, M is not the logical sender
or recipient of any message (even though the actual hardware
will be used to send messages). From a logical point of view, M
is part of the communication infrastructure and not trusted more
(or less) than any other component.

In this light, the only principals of interest are the user A, his
smartcard C and the server S and the remote user B (to be de-
scribed below).

– The user has some data X, which typically is a string of charac-
ters (i.e., a text). A inserts his card (into the smartcard reader
attached to M) and instructs M to transfer the data to the card.

Message 1: U→M : X

Message 2: M→ C : X

There is no need for M to actually send X as a digital hash would
suffice.

– The card accepts the message and signs X, creating {X}K−1
C

. Notice
that the card has no means to verify that X actually originates
from A. Two questions must be answered:

1. Is the signature valid?

112 Smartcard versus PDA

2. Has the correct data been signed?

The online service can be used to verify the signature’s validity;
the signed data is sent to O.

Message 3: C→M : {X}K−1
C

Message 4: M→ S : [X]K−1
C

Recall that [X]K−1 implies the message X together with a signature,
while {X}K−1 is a detached signature.

– The crux of this solution is that S can send back to A a transfor-
mation f of the data it has verified.

Assume that A and S share a secret OTP and a secret number.
After verifying the signature on X, S will create two new message
as follows.

Using the OTP, a new message Z = f(X) is constructed, and sent to
A. The function f is a digital hash (one-way function) as discussed
in Section 2.3.1.

Message 5: S→M : Z

Message 6: M→ U : Z

Z is the message X transformed for integrity under the OTP. The
nature of the transformation is discussed below.

Furthermore, if the signature is valid, S constructs a certificate
asserting this fact; the content of this certificate will be discussed
later. Having created the certificate, S sends it to B.

Message 7: S→ B : [C,X, f(X, f(Y))]KO

A random number Y is associated with each OTP. Y is known only
to A, but f(Y) is known also by S. If S finds that the signature on
X is valid and made by C, S will sign a certificate stating this fact;
the certificate will include f(Y).

– When Z is received byA, he can without much effort (and without
using M to anything but display Z) verify that Z = f(X). Because
Z is a transformation of X, A can conclude that the content was

8.1 Digital Signatures 113

what he intended to sign, and that his trusted server S has verified
the signature. A now releases Y by sending it to B.

Message 8: A→ B : Y

To sum up, the online service verifies the signature made by the
smartcard, and the user acknowledges the actual text by releasing Y.

There are eight messages in total:

Message 1: A→M : X

Message 2: M→ C : X from P

Message 3: C→M : {X}K−1
C

Message 4: M→ S : [X]K−1
C

from C

Message 5: S→ B : [C,X, f(X, f(Y))]KO
Message 6: S→M : 〈X〉OTP
Message 7: M→ A : 〈X〉OTP from O

Message 8: A→ B : Y

Messages 6 and 7 contain the string of digits S constructed based on its
copy of the OTP. Because the OTP is secret, the string is X combined
with a secret. The construction 〈X〉OTP is from BAN.

The next section presents a detailed description of the one-time pad
that is required, a closer look at the messages that are sent and, most
important, a careful analysis of the logical meaning of each message
and of the certificates that are required to conclude that X was signed
by C with the consent of A.

8.1.2 The One-Time Pad

We do not assume that A has any significant computational resources
at hand (the machine M can not be trusted). It is also unreasonable
to assume that any user can verify digital signatures without the help
of a computer. It is for these two reasons a secure channel must be
constructed from S to A, on which a message can be sent. That is, A
needs to receive from S some information that convinces him that the
correct message was signed by the smartcard. This information must be
a function of the message X in order for A to know that the correct text
has been signed. In addition, A must be convinced that the message
he receives comes from S. Taken together, the channel must provide

114 Smartcard versus PDA

authentication (because authentication implies integrity [93]). Clear-
text attacks are indeed a threat because M knows X.

If, on the other hand, X was unknown to M, then A and S could
share a list L of random numbers, each number Li of L being as long as
X. S would verify the signature on X, calculate Z = X+Li and send the
result to A. A would be able to calculate Z−Li and verify that the card
had signed X. This cipher would (also) be perfectly secure.

In the protocol we have designed, each OTP contains two small ta-
bles. The first contains random numbers, as one would use to create a
one-time pad. However, in this case secrecy is not a goal (X is known to
M anyway) but rather integrity. This is so because if ’A’ and a random
number yields 12 then ’B’ must have yielded 13; it is obvious that this
makes a simple attack possible. This goal is achieved by incorporating
an additional table. It is a permutation of the characters; it is named a
substitution table.

In the OTP used by A and S, the alphabet that is available are all the
upper-case characters, space (denoted as ‘ ’), dot (‘.’), the digits and
the two symbols $ and @; 40 characters in all. These characters are
matched with a table of random numbers, assigning a random number
to each character. The example on page 162 shows two examples of
tables; each has six rows:

Letter: The alphabet available to the user

Subst: The substitution table; each character from the alphabet is re-
placed by the corresponding number from the substitution table.

X: In this row the user writes his message

OTP: The number representing each character is added (modulo 40)
to the corresponding element in the One Time Pad.

Z: The result.

Y: A secret number, see below.

When A receives Z = f(X) from S, he would want to verify the result.
In order to do so, he proceeds as follows.

1. Count the number of characters in the message, and prepend this
number (as a string) to the message.

8.1 Digital Signatures 115

Figure 8.2: The protocol run with M removed

2. Write the string in the table (in the row marked X) above the
random numbers.

3. For each character, add the ordinality of the character (taken from
the substitution table) with the random number. The addition
must be done modulo 40 (the number of characters).

An example of a table which is filled in is shown in the Appendix (on
page 161). If A sees that Z indeed is the correct transformation of X,
he will release Y. The certificate generated by S contains f(Y), but Y
is only known to A. In other words, by releasing Y, A makes it known
that he supports the certificate issued by S.

8.1.3 Analysis

In this section we will analyse the proposed protocol to give a better
understanding of its merits. The analysis is on three separate levels.
First we use the SVO logic to analyse the messages that are sent and
received, to show which believes the messages warrants. Second, at
a higher level of abstraction, we use the theory of authentication to
discuss the certificates needed for the user userA to have his statements
authenticated and their content authorized. Then, at the end, we will
discuss the trust relations inherit in the protocol, and argue informally
that no single adversary can do any harm (except denial of service).

In general we can attach a special rôle to the machine hosting the
smartcard reader. The machine is not under the users’ control, and it is
not trusted. Hence, we can considerM to be part of the communication
infrastructure rather than an participant in the protocol. This way we

116 Smartcard versus PDA

need not make any assumptions on its behavior. The simplified protocol
is shown in Figure 8.2.

This protocol has different properties than the many key-exchange
protocols in that the two important parties A and B does not act sym-
metrically or in response to receiving messages from the other party.
Before considering the position of B we will briefly discuss the other
three principals:

C: The situation is simple because C will sign anything that is pre-
sented to it. C does not attach any special meaning to the mate-
rial it signs, and relies on the environment it runs ni (smartcard)
to protect the secret key.

S: The server S is trusted by A to be honest, and assist him in verifying
the signatures made by C.

First there are initial assumptions about the environment:

S1 S believes S K←→ A

S2 S believes PKα(C,KC)

S3 S received [X]KC

The assumption S1 captures the shared nature of the one-time
pad, while S2 manifests that S believes KC to be the signing key
of C. S is expecting a single message. The message is expected
to contain X together with a digital signature on X by C; C must
embed some means for S to identify the sender. All this is shown
in S3.

Then, what S might comprehend:

S4 S believes S received [X]KC

That is, S believes he will be able to determine that the correct
message has been received.

Finally, we include premises corresponding to the meaning S is
supposed to attache to the message he receives:

S7 S sees [X]KC
⊃ S believes C said X

8.1 Digital Signatures 117

If S sees a signed message from C, he will believe that it was sent
by C.

When S3 holds, based1 on S4, Ax1, Ax3, MP, and NEC, S7 holds
as well. Having been convinced that C has signed X and sent the
message, S generates two new messages, one for A and one for
B. It is worth noting that S is in the same position as C: None of
them have any reason to believe that X is fresh. In particular, the
message might be a replay. For this reason S can not vouch for
the freshness of X.

A: In our setting the principal A is human. As such he is not a princi-
pal in the traditional sense, since he is unable to generate a digital
signature. And for this reason it is probably unwarranted to rea-
son formally on his behavior. Nevertheless we will do so, ignoring
the fact that a user might choose to proceed with his actions re-
gardless of the warning issued by the system. One could say that
we take an optimistic view on the users’ will and ability.

Here are the initial assumptions:

A1 A believes fresh(X)

A2 A received {X}K

A3 A believes A K←→ S

A4 A believes ((S says B says X) ⊃ B says X)

Recall that contrary to the notation in BAN, {X}K means any trans-
formation under the control of a key; in this case it is the one-
time pad. To ensure that P1 is warranted, A should either include
a nonce or a serial number in the message; knowing that X is
fresh in the sense that it was created now, is not interesting. The
semantics of SVO states that fresh(X) iff for all principals P and
all points in time prior to epoch, P said X has never been true.
Hence, A must ensure that X is unique, or P1 is not true.

P4 says that A will believe S when S says that C has said some-
thing. It is crucial that A is convinced that P1 holds; he is the only
one able to ensure that this is the case.

A is able to comprehend a single message:

1See Appendix B for a compiled list of axioms.

118 Smartcard versus PDA

P5 A believes A received {X}K

Because A knows X he is able to comprehend a message coming
from S which contains a transformation of it.

Finally, we include premises corresponding to the assumed mean-
ing that A should attach to the message he receives:

P6 A believes (A received {X}K ⊃
S says C said X)

We now state the goal:

G1 A believes C said X

The rationale is that if A believes that his smartcard has just
signed the message he wanted it to sign, he will release the secret
number that will bind him to the message (and the signature).

Upon receiving Message 3 (see Figure 8.2) A can verify by calcu-
lating from his one-time pad, that the message has been encrypted
correctly. That is, he can assert that P2 holds. When P2 holds, P6
will hold as well, based on P1, P3, P4, Ax1, Ax3, MP and NEC.

P4 and P6, based on Ax1 and MP, will enable A to reach G1.

The only point of concern is P4. Assuming that some other prin-
cipal has jurisdiction should not be done without careful consid-
eration. We will return to the justification of this belief below.

B: The principal B is not assumed to be human. In particular, it rests
on B to verify credentials that are supplied with the request from
A; if B is human he must ensure that he has access to sufficient
computational resources.

There are two possible desirable outcomes:

– B believes A said X

– B believes A says X

The difference in semantics is tied the the existence of a “current
run”. See Appendix B for details.

8.1 Digital Signatures 119

The problem in our setting is that in this protocol there is no ex-
change of messages between A and B, and as such no clear no-
tion of a “session”. We will now analyse the protocol to expose
precisely what is needed to achieve the two goals.

First there are initial assumptions about the environment:

B1 B believes PKα(S, Ks)

B2 B believes PKα(C,Kc)

How B get to known the signature keys of S and C is outside the
scope of the protocol;

B will receive two messages

B3 B received {X}K−1‘
C
, [C,X,H(X,H(Y))]KS

B4 B received Y

Then, what B might comprehend:

B5 B believes B received ∗2, [C,X, ∗1]KS
B6 B believes B received ∗3

The components ∗1, ∗2 and ∗3 are unknown until some assump-
tions are made on their interpretation.

P7 B believes B received [C,X, ∗1]KS ∧

B believes B received ∗3 ⊃
B received [C,X,H(X,H(Y))]KS

P8 B believes B received [C,X, ∗1]KS ∧

B believes B received ∗2 ⊃
B received {X}

K−1
C

The function H is assumed to be well known and effectively one-
way function. Having received ∗1, ∗2 and ∗3, B can verify that P7
and P8 are true. We can now proceed with our proof.

1. B believes B received [C,X,H(X,H(Y))]KS

by B5, B8, Ax1, MP.

2. B believes S said C,X,H(X,H(Y))

by 1, B1, Ax3, Ax1, NEC, and MP.

120 Smartcard versus PDA

3. B believes C said X
by B6, B2, Ax1, and MP.

We can get no further without making new and more powerful
assumptions. In particular, we must make assumptions on the
relation between A,C and S. A reasonable one might be:

B believes S said C,X,H(X,H(Y)) ∧ B sees Y ⊃
B believes A said X

There are two issues for us to consider:

1. How to defend against replay (there is nothing to make B believe
X is fresh).

2. Which credentials should A present to B to convince B that such
a strong assumption is reasonable.

We will now look at each of them in turn.

Freshness

The protocol and associated one-time pad must be regarded as a frame-
work within which many possible solutions can be constructed. In par-
ticular, as discussed there is a need to convince B that the message
is fresh. There are two possible approaches depending on what is re-
quired: A time stamp can be added to the messages in a variety of
ways, or B can be engaged in the protocol and given the opportunity
to have a nonce added to various messages. We will now explore these
possibilities.

Adding a real-time component to the messages can be done in a
variety of manners:

1. B can assume that S is trustworthy in this matter.

If B adds to its set of initial beliefs that

B believes S controls Ts

then B is able to conclude that message 5 is fresh within some
predetermined time frame.

8.1 Digital Signatures 121

2. C can include the time in the message.

Contemporary smart cards do not have an on-board clock (be-
cause there is no power available on the card); this will probably
change in the future. When a clock becomes available, C can
include a time stamp in the signature it generates.

Even without a clock, C is able to time stamp messages by relying
on a trusted service by relying on a (mutual) trusted service. If
such a service is available C could issue a nonce and obtain a time
stamp on it.

In addition, there are several other possibilities. If A and B share
a common trusted service, C can contact it to obtain the time (by
means of a nonce). There are technical difficulties in implement-
ing such an approach, mainly in that the machine holding the card
reader must be able and willing to forward messages generated
by the card.

3. A includes the time in the message.

A and B can agree, a priori, that each message needs to start with
a string identifying the time when it was signed. This string would
be 12 characters long, for example 200109241330 representing
13:30 September 24th, 2001. Such a solution will also require
that some time of expire has been agreed upon; this can be em-
bedded in the credentials that must accompany the messages that
are exchanged in this protocol.

Adding 12 characters (and a probably a trailing space) to the mes-
sage obviously decreases the available space for the message.

It is worth remembering that the protocol we are discussing is
centered around the user, and having A include the time of day is
the only means in which the user can be involved.

The second approach is to let B participate in the exchange of mes-
sages. Either C or S (or both) can contact B and offer to include a nonce
in the message to be signed.

1. C includes a nonce provided by B; this is included in the signature
and therefore included in Message 2.

Under the assumption that B believes his own nonces to be fresh,
B should believe that the signature on the message is fresh. This

122 Smartcard versus PDA

does not at all vouch for the freshness of X itself. However, un-
der the assumption that Y is released by A after S has generated
H(X,H(Y)), it should again be possible for B to conclude that X
is fresh because the signing must have happened before Y was
released [83].

2. S can interact with B prior to signing to obtain a nonce that can
be included. The line of arguments will be identical to one above.

Both of these solutions carry with them a problem identification: How
is C (or S) to known that B is the intended recipient? There is nothing
in the protocol that facilitates this. One can, for example, envision that
A augmented the message sent to C with the name of B. On the other
hand, the protocol has been devised to make it feasible for A to sign an
arbitrary message by means of his smartcard, and whether the message
is fresh or not might or might not be an issue of concern.

When discussing the issue of freshness, it is necessary to have the se-
mantics in mind. Ideally we would like B to be convinced that A says X
rather than “just” A said X. The semantics ties the difference between
the two on whether there exists an epoch or not. In the protocol as we
have discussed it, there is not, and hence no way to establish fresh(X).
And no way to make B believe that A says X.

We end this section by pointing out that our line argument is based
on the assumption that there is no communication between A and B
prior to the first message being sent. If A and B has some extra-system
communication channel they can agree on a nonce, for example, that is
to be included in X. It B adds the premise that B believes fresh(X) it
is possible to derive B believes A says X.

Trust

We have shown that the protocol fulfills its goals, when regarded from
the point of view of the believes the messages can reasonable lead to.
Here we will explore what is required to make any of the assumptions
untrue.

What has been described is how a user A can sign a message; what
follows is a description of how a receiver verifies that a signed message
is valid. Assume a userQ receives a message 〈Y, [X]KC

〉 from A. Assume
furthermore that Q believes that C belongs to A. Upon receiving the
message, Q contacts S and asks for the certificate that O should have

8.1 Digital Signatures 123

Message Meaning

X X

[X]KC
C says X

O|C says X,
[C,X,H(X,H(Y))]KO O|Y says X

Y Y

Table 8.1: Messages and their interpretation

generated. Obtaining it, Q has all he needs to conclude that X was
signed by C, thatO has verified that the signature was in order, and that
A has verified that the correct data was signed. The four datums that
are available to Q is shown in the left column of Table 8.1. Informally,
the fact that A has released Y is proof that A has verified the signature.
Below is a more formal view of the system, expressed in the theory
from [85].

If Q is to act upon X he would need a certificate, signed by A (or
a principal Q believes speaks for A), asserting that possessing the four
items together vouches for the conclusion that X originates from A.
Because the machine M is not trusted, A does not control C, and to
assume C⇒ U (i.e., C speaks for U) is unwarranted. The intention of
A is that no-one will hold him responsible for any message X unless the
following conditions are met:

– X is signed by C.

– The signature made by C is verified by O. O must say that C have
said X.

– O must tie (the secret) Y to the signed message. This enables A
to accept the signature by releasing Y.

– Y is available.

All this is captured in the following certificate

P says (C∧O|C∧O|Y)⇒ P (8.1)

124 Smartcard versus PDA

Because Y is secret, Q is unable to satisfy the certificate (8.1) unless A
releases Y. In practice, S could in addition act as an on-line verification
for the validity of C in thatAwould make C issue C says (S|C∧C)⇒ C.

See [85] for details.
With these credentials, the axioms and interference rules set forth

in [85], it follows thatU says X. Note that the use of Y give the message
the properties of a transaction authentication as defined in [93]; mes-
sage authentication and the use of time-variant parameters (timeliness
or uniqueness).

As can be seen from (8.1) it is a prerequisite for certificate verifica-
tion that S says that A says X. However, A does not want to include S in
his TCB. S has not been given Y by A, but rather f(Y). When S quotes A
as saying X it might turn out that S is mistaken; this is in fact correct in
the cases where a message has been given to C for signing without As
consent. In other words, when B collects credentials he might or might
not be able to locate Y. In such a situation there are two possibilities:
Either A has not released it (he has detected an attack) or Y has been
delayed or deleted as part of a traditional denial-of-service attack. In
general, because A is at the mercy of the machines he is using, there is
no way to defend A against denial of service.

For a user, creating a trustworthy digital signature is impossible un-
less he trusts the hardware he is using. As described earlier signing
becomes a problem when the communication channels leading to and
from the smartcard is controlled by some other entity. In a distributed
setting, the server S is a trusted third party in that the user A trusts it
to act according to the protocol (i.e., not to certify that a signature is
good if it is not). On the other hand, S is not able to deceive A without
colluding with the machine M. When S and M collude, M can feed
a false message to the card and let S send an erroneous message back
to the user. The important issue is that acting in isolation, S can not
deceive A. In the same manner as S can not deceive A alone, neither
can B, nor C. It can be concluded that no principal is in a situation to
make A release Y, without colluding with some other principal.

The online server S is central to the security of the system. If it col-
ludes withM, signatures can be created without A’s consent. However,
it is to be expected that O is under the control of the user. That is, the
user can have O placed in a trusted environment (at home, for exam-
ple) because there is no reason why the online server need to be part
of an infrastructure controlled by others.

8.1 Digital Signatures 125

Concern might be raised against the solution in that the combination
of the card and a set of one-time pads represents a threat; losing them
together would make the finder able to sign messages. However, access
to the card might be secured with a PIN as is done with contemporary
cards. This way, theft would not represent a threat.

If a server such as S is not available, the functionality offered by S
can be implemented within C. In such case one would store the OTPs on
the smartcard together the the secret key. C would then be able to first
sign X and then generate Z = f(X). Contemporary smartcards do not
have sufficient memory to store a significant number of OTPs, but will
surely change with time. We believe the above analysis will be correct
regardless of whether C and S is physically within the same machine or
not.

8.1.4 Implementation details

The security of the system hinges on three properties. The first is that
one component in each sum is a random number. Randomness ensures
the resulting list of numbers are random. No amount of calculation or
number of previous messages can give information necessary to alter
the text. Second, each OTP and substitution table can only be used
once. Third, text can not be appended to the string.

Obviously, the length of the string that can be transmitted (and ver-
ified) in this manner is restricted by the length of the pad. However,
the pad can be made as long as one desires and the amount of work
to verify a message increases linearly with length. Another way to in-
crease the task of verification is to increase the alphabet length (now
being 40). If this length is increased, the OTPs and corresponding sub-
stitution tables must be increased accordingly.

The application of the signing procedure described here lies primar-
ily in signing short messages. We wanted to verify the design by means
of an implementation. Although the protocol was described as hav-
ing five different participants (see Figure 8.1 on page 111), an imple-
mentation merges the on-line server (denoted O in the figure) and the
users’ server (denoted S). Furthermore, the machine that holds the
card reader has a very simple protocol to adhere to (simply forwarding
the messages it receives). In fact, the machine only needs to forward
to the card the message to be signed, and to the user the message it
receives from the card. All the other messages can be handled by the

126 Smartcard versus PDA

user through a browser or some other means. We first discuss an im-
plementation in general, before dwelling with details in our.

– On the smartcard, the application must accept the message to
be signed, perform the signing with the appropriate public key,
and return the result. We use the Cyberflex Open Series, man-
ufactured by Schlumberger. The card conforms to the JavaCard
2.0 specification and communicate by means of the T=0 protocol
(as per ISO 7816-3 [73]). The card supports both applets and
applications (classes with a main-method); programs are called
Cardlets in JavaCard terminology.

To minimize communication, only a secure hash of the message
is sent to the card, although the card supports signing the entire
message. The Cardlet signs the hash with the installed secret key,
and returns the signature.

– The server receives the message and the signature created on the
smart card. After verifying that the signature is indeed calculated
from the hash of the message, the server looks up the table of
OTPs, selects the first unused one, and using the substitution ta-
ble, the message and the actual OTP, calculating the resulting “en-
crypted” string. This is the returned to the caller (which might or
might not be the machine the user is using; this is not a threat
to security except that it makes denial of service possible). This
software is trivial, and can be implemented in any language one
might fancy.

– On the machine holding the smart card some form of user in-
terface must be available; the system itself might very well solely
support an API making it possible to write any interface one might
desire (such as part of an CGI script). The message is collected and
sent to the card for signing, and the signature retrieved. A driver
for the T=0 protocol is needed; many are available.

Our implementation differs from the above in that we chose a slightly
different approach, linking secure signing with access control. That is,
instead of assuming that the user is sitting in front of a machine, we
have designed and built a device that makes it possible to obtain a sig-
nature from the user that he wants access (not only from his smartcard)
without giving him access to a machine proper. The device has a stan-
dard reader for smartcards, a small keyboard, and a display. All three

8.1 Digital Signatures 127

Figure 8.3: Device for secure signing; Manufactured by Ken-Arne
Jensen, based on a design by this author. In the background, a cra-
dle for the PalmPilot.

devices are controlled by a machine in the room by means of a two se-
rial lines; the keyboard and display are controlled by one (RX and TX
respectively) while the card reader is controlled by the other.

The user might prefer to prove his presence by some other means
than by signing a message with the key stored in his smartcard; in
particular, he might prefer to use the key he has in his PDA. To facilitate
this, a cradle for the PalmPilot is also installed.

The actual setup is a machine which controls the lock of a door, the
cradle, and the special purpose device to facilitate secure signing with
a smartcard according to the protocols described earlier. The setup
is shown in Figure 8.3. The door can be unlocked by applying 12V,
controlled by a relay, which again is controlled by the voltage supplied
by the parallel port on a machine.

The device has a standard reader for smartcards, a small keyboard,
and a 80× 2 back lit LCD. All three devices are controlled by a machine
in the room, and five different methods are available for unlocking the
door (in addition to the physical key):

1. Proof by knowledge: a Traditional PIN-code; the code is simply
typed on the keyboard.

2. Proof by possession: Having a smartcard that can be identified
(returns a valid encrypted challenge). The key needed to unlock
the card is known to the machine.

128 Smartcard versus PDA

3. A combination of the two: The PIN is used to derive an DES key,
which is then used to challenge the card, or a combination where
the key to the card is known and the user-card binding is done by
the machine.

4. Proof by providing a PDA which can sign with a secret key. We
have chosen the PalmPilot, and a cradle for it is installed next to
the device holding the smartcard (see the figure). Signing can
either by by a shared key (as explained in [96]) or with a secret
key.

5. Secure signing with a smartcard as described earlier.

Since the keyboard does not have all 40 keys needed to sign messages
with text, the system can only be used to sign numerical challenges.
Although this is less powerful than described, it is sufficient to prove
the identity of the person outside.

Experiments show that verification performed by the user is initially
done at a speed of approximately 7-8 seconds per digit. Speed increases
as one gets accustomed to the calculation. Experienced users spend
approximately 3-4 seconds per digit. Slightly slower than typing, but in
our opinion worthwhile.

8.1.5 Related work

We know of no other system where smartcards are used to place the
user in control (as opposed to control the user). Storing encryption
keys is a prime application for smartcards, but, as argued, it places
users at the fringe of the system. As an example, smartcards can be
integrated into Kerberos to further marginalize the user [70].

Smartcards give rise to a different set of trust-relations than does
“traditional” computers; this is discussed in [116].

Our solution is in principle a Message Authentication Code (MAC).
MACs are well covered in the literature, see for example [93, 128, 119].
Most types of MACs, such as MD5 [107], are surjective, and require quite
some computation to be secure (mapping one language onto a smaller
while being a one-way function; see Section 2.3.1 for details).

The use of unconditionally secure MACs are described in great detail
in [128, Chapter 10] with the use of orthogonal arrays (OA). These OAs
seems, however, to be infeasible to work with for humans compared

8.2 Augmenting smartcards 129

to substitution tables and OTPs that only require the use of elementary
arithmetics.

8.1.6 Discussion

Smartcards are commonly employed to ensure that users are firmly
placed at the fringes of the system. Because smartcards lack a com-
munication channel to the user, the system that uses them is in full
control. In general terms, the rôle assigned to users is one where they
present their PIN whenever requested to do so. In our view, such a rôle
is rather old fashioned. The challenge is to make it possible to enjoy the
benefits of tamper resistant hardware with a standardized form factor,
while building user-centric systems.

In our view, the crux of controlling one’s own private computing en-
vironment, is the ability to create digital signatures in a secure manner.
It has been shown here that users can achieve secure authentication
of messages signed with a smartcard even in hostile environments, by
using a partial trusted server together with a substitution table and a
one-time pad. The applicability of the proposed solution lies in short
messages with small character sets.

Admittedly, the solution is cumbersome, and of limited use as it
is. However, it proves that, from a security point of view, there is no
border separating smartcards from more powerful machines. Or, in
other words, user-centric systems can be built also if one wants to place
secrets on smartcards.

The most important ramification of this result is that it demonstrates
how systems can be constructed where holders of smartcards benefit
from the properties of smartcards. A different view is that it is also
possible to construct a system where a user can retain their (digital)
identity, as defined by their encryption keys, over a wide range of equip-
ment.

8.2 Augmenting smartcards

So far, the discussion has been focused on infrastructure necessary to
securely sign a message by means of a smartcard. As became evident,
what is lacking is secure channels from the card to the user, and those
channels were implemented by means of a one-time pad. In this section

130 Smartcard versus PDA

a different approach is described, deviating from the standard in order
to obtain new functionality.

In Section 1.4 it was made explicitly clear that we do not assume
that communication links have any interesting properties such as pro-
viding secrecy, integrity or (ordered) delivery. However, some channels
do indeed have such properties. In settings with private machines, it
is reasonable to expect that “messages” that are printed on the device’
screen are regarded not only as fresh, but also as authenticated. It
is also evident that such a message is fresh regardless of whether any
component of the message is fresh in the technical sense. This obviously
also holds for input.

Analyzing protocols with messages in clear text is not less hard than
analyzing other protocols, and we need to look at the logics. However,
the logics need to be augmented in order to add a notion of clear-
text channels with special properties [1]. We will briefly review the
additions to the logics; the original contribution was to augment BAN

and we will follow that line here even though we use SVO through.
First some notation:

P saidL X: The principal P once said X on a link named L

P seesL X: P sees X on a link named L

timely(L): All messages on the channel L are known to have been sent
recently

L
≺ P: All messages arriving on L is known to have been sent by P, or a

principal trusted by P

The intuitive semantics is that a message is fresh if you see that it is
printed on a display.

In order to infer new beliefs from reception of messages the BAN

logic must be augmented. Two new rules for inference is introduced:

– The origin of a message can be inferred if it arrives on a channel
about which assumptions are made:

P believes
L
≺ Q,P seesLX

P believes Q saidL X

8.2 Augmenting smartcards 131

– If it is believed that a channel is timely (all messages on it are
fresh), “said” can be promoted into “believe”

P believes timely(L), P believes Q saidL X
P believes Q believes X

In [1] these new rules are used to reason about protocols in settings
with smartcards. Here, the augmented logic can be used to analyse
protocols with messages sent in clear text on timely and identifiably
channels.

In essence, because the user A is unable to sign or encrypt without
assistance, and any devices used to assist the user increases the TCB,
we would like to have an authenticated channel that provides secrecy
between the user and the device. With the formalism presented above,
we want a channel L that makes it possible for the card to assume

timely(L), and subsequently
L
≺ U.

8.2.1 Secure Channels to and from a smartcard

The previous section showed the applicability of a keyboard and display
on a smartcard. This section will describe how a card can be manufac-
tured to include both a display and a keyboard. In brief, the ques-
tion is: How can a card be inserted into a card reader while retaining
enough space to accommodate a keyboard and a display, while being
constrained by the standards that determines how large the card can
be [73].

8.2.2 General characteristics

We propose a card which deviates from the standard. The costs are
obvious, but we believe the gains might very well be worth the change.
In short, a card is proposed, which, when from the reader, is a standard
one. On “upside” of the card one finds a small display and 12 keys.

Seen from above the card resembles a simple pocket calculator, as
shown in Figure 8.42. The user interface (parts the user can interact
with) consists of two elements:

Display: The card sends messages to the user by writing on the display.
2The figures in this section have been copied from the patent application, and has

not been altered.

132 Smartcard versus PDA

1 2 3

4 5 6

7 8 9

− 0 +

Screen

Figure 8.4: A card seen from above

21

21
Figure 8.5: A card seen from the side

Keypad: To enable the user to send numeric messages, amounts and
PIN code in particular, the keys for the ten digits are provided. In
addition, two keys are provided to facilitate acceptance (on the
figure symbolized by the key “+”) or refusal (symbolized by “−”).

Assuming communication with the reader is possible (to be described
below), an application can, for example, request the card to sign a
nonce to prove that the correct user is present. The card will prompt
the user for the PIN, using it to decrypt the secret key stored on the
card. With the secret key decrypted, the nonce can be signed. The PIN

does not have to pass through an untrusted reader. A solution along
these lines are described in [1].

The card consists of two major parts. The major part is the one
hosting the display and the keys, while the minor part, hinged to the
major part, constitutes a “flap”. Mounted on the flap is the processor,

8.2 Augmenting smartcards 133

1
2

3
4

5
6

7
8

9
−

0
+

Screen
31

2

Figure 8.6: A card seen in perspective

and it has a standard form factor as described in the standard. The
processor is connected to the display and keys by means of conductors
embedded in the card. In Figure 8.5 the modified card is seen from the
side, and the flap is in the “up” position. It can be noted that the card
itself is twice as thick as the flap, which has the prescribed form factor.
Arrow 1 points at the hinge, arrow 2 at the flap.

When a card is modified, the crucial question is compatibility. Fig-
ure 8.6 shows the card in perspective with the flap in the “down” po-
sition. The keyboard and display are clearly visible on top of the card,
and it is shown how the flap can be placed downwards. Again, arrow 1

points to the hinge and arrow 2 points at the flap proper. In this posi-
tion the electrical contacts for the processor are visible; arrow 3 points
at the contacts.

Notice that the contacts are positioned on the now standard “lower
location” on the flap in according to ISO 7816/2. That is, one half of
the card is according to the form factor described in the standard. In
particular, this modified card can be used in all readers where the card
is inserted only partially.

A dedicated reader has been designed; a cut through this reader is
shown in Figure 8.7. The idea is that the card can now be inserted
vertically into the reader. When the card is full inserted, with the flap
into the slot in the reader (arrow 4 point to the slot), the card will lay
flat on the surface of the reader (arrow 5), while the contacts on the flap
are placed firmly against the contacts in the reader (positioned where
arrow 6 points).

134 Smartcard versus PDA

6
5

4

Figure 8.7: Cross section of a reader

8.2.3 Related work

Our patent is not, by far, the first to be concerned with the communica-
tion channel between the user and personal computing devices. Assum-
ing that that the device has a communication channel, one can reason
about protocols on the channel [1]. The problem remains, however, of
how to implement the communication channel.

It is the combination of three issues that makes our approach novel:

1. Making it possible to fold the card; this is both for convinience
and for attaching it to a reader.

2. Attaching a keyboard to a smartcard.

3. Maintaining the formfactor of the standardized smarcard to the
extent possible.

We will now discuss these issues separately.
United States Patent no. 5.373.147 describes a “Folding Electronic

Card Assembly”. The patent itself is limited to PCMCIA cards, but the
idea can obviously be extended to other card-like devices. As shown in
Figure 8.8(a), the card can be inserted into a Type I or Type II PCMCIA

slot. The part outside the machine can, for example, contain a radio
transmitter for use with a wireless local area network. When folded,
as shown in Figure 8.8(b), the card will fit within a Type III or Type IV
PCMCIA slot.

8.2 Augmenting smartcards 135

(a) Unfolded (b) Folded

Figure 8.8: A card that can be folded.

In this invention the folding is used to accomodate the card into
several different standardized readers. In some senses, this is also our
approach, although we only aim for one reader. We must assume that
in both inventions the technical solution for the manufacturing of the
hinge will be similar.

A very different approach is taken by UK Patent no. 2333926 which
describes a device that can be folded, and to which one attaches a
smartcard with an integrated keyboard. The device is designed as a
GSM phone and as such not of interest to us. In this invention it is the
device (phone) that can be folded and not the smartcard. The keyboard
that is needed on a telephone is mounted on a smartcard and can be
detached; the device is shown in Figure 8.9. The smartcard (item no.
909 with electric contacts placed as indicated by no. 904) slides onto
the device proper. The contacts then engages onto the contacts on the
device (no. 915).

The smartcard necessary for a GSM subscription is portable, and im-
plementation of applications can be envisioned to use the keyboard and
display available on the card. This invention demonstrates that inte-
grating a keyboard onto a smartcard in itself is not novel. The problems
of how to manufacture the keyboard so that it will fit on the card will
be the same for both inventions.

German patent no. DE 4205615A1 constitutes a very different ap-
proach to the problem of obtaining a communication channel between
the device and the user. Here the device does not host a smartcard
but is rather a portable reader where a smartcard can be inserted. The
device can be folded for convinience, but the folding is not part of the
working of the device. The device is shown in Figure 8.10.

136 Smartcard versus PDA

Figure 8.9: Smartcard with keyboard, and custom designed reader.

The idea is that a user can insert his smartcard (item no. 9) into
his own reader (item no. 13) so that the card will engage the contacts
of the reader (item no 10). Secure communication between the user
and the card is now possible by means of a trusted reader. The patent
describes how the card, for example, can be “loaded” with a PIN so that
when the card later is inserted into an untrusted reader there will be no
need for the card to obtain the PIN again. This patent does not discuss
whether such mode of operation requires changes to the software on
the card or in the banking system, but we believe this to be the case.

8.2.4 Discussion

Being tamper resistant, smartcards are the prime target for implementa-
tions of electronic commerce. Few other platforms enjoy such widespread
acceptance of both the form factor and programming interface. How-
ever, lacking a secure channel to the user, the applicability of smartcards

8.3 Conclusions 137

Figure 8.10: Card that can be folded, with user interface.

must be traded against the privacy of the user. The suggested change
to the card, which to a great extent maintains compatibility, will enable
applications that better guard privacy.

None of the ideas that are used in our approach are new but the
combination is.

8.3 Conclusions

It might seem as if a PDA is different from a smartcard. However, be-
cause smartcards are a general purpose computers, at least seen from
a computational point of view, it is possible to communicate with such
machines in just the same manner as one would with any other ma-
chine. In particular, it is possible to exchange messages by means of
channels that offer integrity, such as those a one-time pad represents.
Establishing this fact by means of an working example effectively blurs
the border between smartcards and PDAs. How smartcards best are put
to use in distributed systems remains to be seen, but the contributions
made here makes it quite clear that the border between a smartcard

138 Smartcard versus PDA

and a PDA is one of convenience, not of real significance. In particular,
because there is no important border between the two “types” of ma-
chines, we can envision a range of equipment spread out between the
contemporary PDA and the standardized smartcard. These machines
would be able to offer basically the same services, but with a varying
degree of convenience.

In this chapter we have merely established the fact that there is a
borderless area between the traditional PDA and the smartcard. There
is probably room for considerable amounts of ingenious engineering;
we have not indulged in those challenges.

Chapter 9

Conclusions

Our investigation has focused on private machines, and their inclusion
in distributed systems. Basically, we have presented three lines of ar-
gument. First, we presented the open-end argument, and, based on
it, we elaborated on how to close sessions and the stability of beliefs.
Our main point was that the price to pay for transparency is the abil-
ity for users to control the system. Second, FR and off-line delegation
was used as examples of how the inclusion of TDAs influences systems,
and how the open-end argument can be put to use. Third and last, the
nature of the TDA was explored by demonstrating how smartcards can
be used as TDAs, and how to add functionality to a smartcard to turn it
into a TDA.

In the introduction, our discussion on the use and applicability of
private machines led us the pose the following two questions:

1. How does the integration of private machines influence the design
of distributed systems?

2. How can a private, trusted device be included in the decision loop
when it comes to sharing, delegation, authorization, and so on?

We have discussed a few issues related to this.

From our discussions it has become apparent that distributed systems
with an ambition to include private machines must have (at least) three
properties that will set them aside from more traditional systems. The

139

140 Conclusions

first is related to off-line delegation, the second to what constitutes a
user (principal), and the third to transparency as a design goal.

With a private computer at hand, users will inevitably desire to
grant access (delegate authority) to objects under their control. In the
common case, the certificate is generated by the owner in cooperation
with infrastructure (a file server, for example). With communication in
place, transferring the certificate is also simple; the receiver can then
exercise it at will. Delegation should be possible also when the partic-
ipants are not connected to the infrastructure. This situation can arise
either because the server in question is unreachable, or because the
participants are isolated (off-line). Furthermore, we believe delegation
should also be possible when there is no (electronic) connectivity at all.
The single most important prerequisite for off-line delegation is that
authority is expressed by means of certificates. We have demonstrated
how this can be done under these conditions. The proposed solution,
that works without connectivity, will obviously also work when com-
munication is possible.

Taking a user-centric position, it is natural that the policy governing
access to resources owned by the user, for example files, should be
controlled by the user himself. Files are but an example, because the
general model where a monitor evaluates requests can be used on many
types of resources. Access to a room (by means of unlocking a door)
would be implemented in just the same manner, with the same type of
certificates. Our line of arguments have applicability also outside the
scope under which they have been presented.

When authentication is based on certificates, we are free to again
take a user-centric view. Users are free to delegate authority over their
own resources to whatever channels they desire. However, it is an open
engineering question how to design a system the will gracefully handle
“downgraded” security. That is, designing and implementing a security
regime where users can estimate the security risk of delegating author-
ity to (security wise) weak channels (such as a password). For exam-
ple, a user can delegate to a password authority to access a file for a
limited time span (that is, anyone with the password are authorized).
Before the certificate expires, an infrastructure for revocation is neces-
sary to invalidate it, but that again must be encoded in the certificate
in the first place (unless one is willing to accept a default security pol-
icy, which was the reason to start using certificates in the first place).
It is an engineering challenge to find the tradeoffs in the design of a

141

particular system.
To us, it is evident that if a distributed system is to include private

machines, it must be designed in accordance with the open-end princi-
ple. In fact, one could argue that a system where the user (and his ma-
chine(s)) is not the focal point, does not embrace private computing at
all. We believe the term ubiquitous computing must imply private com-
puting, and that the open-end argument should be the guiding principle
for all such endeavor. We can envision an ubiquitous system where the
user did not involve himself in any manner that was important to him.
That is, the system could turn the light on and off in his office, pro-
vide him with stock quotes regardless of his whereabouts, and so on.
But if he were to entrust the system with private information to any
interesting extent, we are convinced that he would require control over
it.

If we turn to design philosophies behind distributed systems, we
have noted that layered design lends itself to transparency. Not that
transparency is a bad thing, but in the mix of private computing and
security there are qualitative assessments to be made as well as veri-
fying (cryptographic) correctness. On the other hand, electronic com-
merce, almost by definition, seems to require some sort of authentica-
tion of strangers and it is hard to envision such services without the
assistance of a (trusted) third party. Here, transparency indeed has its
place. Again we see that private computing places new demands on
distributed systems in that they require a different design strategy.

An old saying goes that security can not be added to a system as an
afterthought; this probably also holds for TDAs.

Because it is impossible to give a rigorous definition of what a TDA is,
we resort to the requirement that a TDA must (at least) be able to create
a digital signature in a safe manner. Safe from the user’s point of view,
that is. We fail to see how a TDA can be realized without being at least
this powerful.

We have discussed two types of machines that can be used as basis
for a TDA: The smartcard and the PDA. Of these, the smartcard is par-
ticularly interesting because the large installed infrastructure backing
this technology. It is obvious that the PDA can act as a TDA, as long as
the software on it is designed with this in mind. The interesting aspects
arise in the interaction between a PDA and supporting infrastructure.

142 Conclusions

Here, the challenges one faces are alike, regardless of whether the TDA

has been build no the PDA or smartcards.
However, smartcards offer additional challenges, because machin-

ery of some sort is needed for users to communicate with smartcards.
This typically marginalizes the user. The problem is, basically, that
nothing ties the signed text to the user. In particular, the user would
always be able to claim that his intensions were to sign a different text,
and no-one would be able to produce any convincing argument against
the validity of this claim. What this means is that the electronic identity
based on smartcards would be much “weaker” in a sense; in stark con-
trast to the weight which one would be able to place on the signature
per se. Smartcards have a real advantage over other possible technolo-
gies: They are standardized, widespread, and supported by a large and
prosperous industry. It is thus an engineering challenge to put them to
work.

With marginal resources at hand, users will (have to) rely on remote
servers to do part of the work. It is then necessary for these servers
to be designed and implemented with the user as the focal point. In
particular, such services must be built with the assumption that there is
no such thing as a default security policy to which users must adhere.
In our view, the most interesting aspect of this observation is that user
themselves will have the power to grant access to to their own resources
by whatever means they desire. As another example, it was shown that
if a regime is put in place where the user (represented by his TDA)
controls the system rather then the other way around, then the system
must also be designed in such a way that sessions can be closed at
the users’ discretion. This also reflects onto transparency as a design
principle; transparency and security is not a good mixture.

Because smartcards can be shown to be equivalent to a TDA, there
does not seem to be a lower bound on how a TDA can be realized;
we will naturally assume that we are considering computers at least as
powerful as the Turing machine. Thus, it is a question of convenience
whether one wants to utilize smartcards in a system rather than a more
general PDA when implementing the TDA. The advantages of a tamper-
proof device should probably not be underestimated in system design.
Contemporary smartcards are virtually tamper proof, and it would be a
pity to employ them in a setting where that positive aspect is not fully
exploited. Seen in this light, smartcards have no place unless comple-
mented by other, trusted machinery. In concert, a smartcard on which

143

secrets are stored securely and a trusted machine which acts as media-
tor between the user and the card, constitutes a powerful platform for
guarding the privacy, while being flexible at the same time.

— ∗ —

144 Bibliography

Bibliography

[1] ABADI, M., BURROWS, M., KAUFMAN, C., AND LAMPSON, B. Au-
thentication and delegation with smart-cards. Science of Com-
puter Programming 21, 2 (Oct. 1993), 93–113.

[2] ABADI, M., BURROWS, M., LAMPSON, B., AND PLOTKIN, G.
A Calculus for Access Control in Distributed Systems. In Pro-
ceedings of Advances in Cryptology—Crypto’91 (1992), Springer-
Verlag, pp. 1–23.

[3] ABADI, M., AND NEEDHAM, R. M. Prudent engineering prac-
tice for cryptographic protocols. IEEE Transactions on Software
Engineering 22, 1 (Jan. 1996), 6–15.

[4] ABADI, M., AND ROGAWAY, P. Reconciling two views of cryptog-
raphy. In Proceedings of the IFIP International Conference on The-
oretical Computer Science (IFIP TCS2000) (Sendai, Japan, Aug.
2000).

[5] ABADI, M., AND TUTTLE, M. A Semantics for a Logic of Authen-
tication. In Proceedings of the 10th Annual ACM Symposium on
Principles of Distributed Computing (Aug. 1991), pp. 201–216.

[6] AKTINS, D., STALLING, W., AND ZIMMERMANN, P. PGP message
exchange format. RFC 1991, The Internet Society, Aug. 1996.

[7] ANDERSON, R. J. Liability and computer security: Nine prin-
ciples. In Computer Security (ESORICS 94) (1994), vol. 875 of
Lecture Notes in Computer Science, Springer Verlag, pp. 231–245.

145

146 Bibliography

[8] ANDERSON, R. J. Why Cryptosystems fail. Communications of
the ACM 37, 11 (Nov. 1994), 32–40.

[9] ANDERSON, R. J. The Eternity service. In Proceedings of the 1st
International Conference on the Theory and Applications of Cryp-
tology (1996).

[10] ANDERSON, R. J. Security Engineering. John Wiley & Sons, Inc.,
2001. ISBN 0-471-38922-6.

[11] ANDERSON, R. J., CRISPO, B., AND LEE, J.-H. The Global Internet
Trust Register. MIT Press, 1999. ISBN 0-26251-105-3.

[12] ANDERSON, R. J., AND KUHN, M. Tamper resistance — a cau-
tionary note. In Proceedings of the 2nd Workshop On Electronic
Commerce (Oakland, California, Nov. 1996), USENIX Associa-
tion, pp. 1–11.

[13] ANDERSON, R. J., AND KUHN, M. Low cost attacks on tamper
resistant devices. In Proceedings of 5th International Workkshop
on Security Protocols (Apr. 1997), vol. 1361 of Lecture Notes in
Computer Science, Springer Verlag, pp. 125–136.

[14] ANDERSON, R. J., AND NEEDHAM, R. M. Programming Satan’s
Computer. In Computer Science Today — Recent Trends and De-
velopments, J. van Leeuwen, Ed., vol. 1000 of Lecture Notes in
Computer Science. Springer-Verlag, 1995, pp. 426–440.

[15] ANDERSON, R. J., AND NEEDHAM, R. M. Robustness Princi-
ples for Public Key Protocols. In Proceedings of Advances in
Cryptology—Crypto’95 (1995), vol. 963 of Lecture Notes in Com-
puter Science, Springer-Verlag, pp. 236–247.

[16] BAGGIO, A. System support for transparency and network-aware
adaptation in mobile environments. In ACM Symposium on Ap-
plied Computing special track on Mobile Computing Systems and
Applications (Atlanta, Georgia, USA, Feb. 1998). Also available
as a research report: INRIA Research Report 3408, April 1998.

[17] BASHIR, I., SERAFINI, E., AND WALL, K. Securing network
software applications. Communications of the ACM 44, 2 (Feb.
2001), 29–30.

147

[18] BELLOVIN, S., AND MERRITT, M. Encrypted key exchange:
passord-based protocols secure against dictionary attacks. In
Proceedings of the 1992 IEEE Computer Society Conference on Re-
search in Security and Privacy (1992), IEEE Computer Society,
pp. 72–84.

[19] BELLOVIN, S. M., AND MERRIT, M. Limitations of the Kerberos
authentication system. ACM Computer Communications Review
20, 5 (1990), 119–132. A version was published on the 1991
Usenix Winter conference.

[20] BIRRELL, A. D., HISGEN, A., JERIAN, C., MANN, T., AND SWART,
G. The Echo distributed file system. Techical report 111, Digital
Equipment Corporation Systems Research Center, Palo Alto, CA,
Sept. 1993.

[21] BLAZE, M., DIFFIE, W., RIVEST, R. L., SCHNEIER, B., SHIMO-
MURA, T., THOMPSON, E., AND WIENER, M. Minimal Key Length
for Symmetric Ciphers to Provide Adequate Commercial Secu-
rity. A Report by an Ad Hoc Group of Cryptographers and Com-
puter Scientis, Jan. 1996.

[22] BLUM, M., AND GOLDWASSER, S. An efficient probabilistic
public-key encryption scheme which hides all partial informa-
tion. In Proceedings of Advances in Cryptology—Crypto’84 (1984),
vol. 196 of Lecture Noets in Computer Science, Springer verlag.

[23] BORENSTEIN, N. S., AND FREED, N. MIME (multipurpose inter-
net mail extensions) part one: Mechanisms for specifying and
describing the format of internet message bodies. RFC 1521,
The Intnernet Society, Sept. 1993.

[24] BOYD, C., AND MAO, W. Designing Secure Key Exchange Pro-
tocols. In Third European Symposium on Research in Computer
Security (ESORICS 94) (Brighton, United Kingdom, Nov. 1994),
vol. 875 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 93–105.

[25] BRANDS, S. Rethinking public key infrastructures and certificates
– building in privacy. PhD thesis, Technische Universiteit Eind-
hoven, Sept. 1999. ISBN 90-901-3059-4.

148 Bibliography

[26] BREWER, E., KATZ, R. H., AMIR, E., BALAKRISHNAN, H.,
CHAWATHE, Y., FOX, A., GRIBBLE, S., HODES, T. NGUYEN, G.,
PADMANABHAN, V., STEMM, M., SESHAN, S., AND HENDERSON,
T. A network architecture for heterogeneous mobile computing.
IEEE Personal Communications Magazine 5, 5 (Oct. 1998), 8–24.

[27] BURROWS, M., ABADI, M., AND NEEDHAM, R. M. A logic of au-
thentication. ACM Transactions on Computer Systems 8, 1 (Feb.
1990), 18–36. Also available in the Proceeding of the 12th
Symposium on Operating System Principles, Litchfield Park, AZ,
USA, 3–6 Dec. 1989. Published as ACM Operating System Re-
view, Vol. 23, No. 5, pp. 1–13, December 1989. Also presented in
Proceedings of the Royal Society of London, Series A, 426:233–
271, 1989.

[28] BURROWS, M., ABADI, M., AND NEEDHAM, R. M. Rejoinder to
Nesset. ACM Operating System Review 24, 2 (Apr. 1990), 39–40.

[29] BURROWS, M., JERIAN, C., LAMPSON, B., AND MANN, T. On-line
data compression in a log-structured file system. In Proceedings
of the Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems (1992), pp. 2–9.

[30] BUTTYÁN, L. Formal methods in the design of cryptograpic pro-
tocols. Technical Report SSC/1999/38, Swiss Federal Institute
of Technology (EPFL), Lausanne, Switzerland, Nov. 1999.

[31] CALLAS, J., DONNERHACKE, L., FINNEY, H., AND THAYER, R.
OpenPGP message format. RFC 2440, The Internet Society, Nov.
1998.

[32] CCITT. Information Technology — Open Systems Intercon-
nection — The Directory: Authentication Framework. CCITT
Recommodation X.509, ISO/IEC 9594-8, Dec. 1991.

[33] CLARK, J., AND JACOB, J. A survey of authentication protocol
literature. Available from http://www.cs.york.ac.uk/∼jac.

[34] DAVIDSON, S. B., GARCIA-MOLINA, H., AND SKEEN, D. Consis-
tency in partitioned networks. ACM Computing Surveys 17, 3
(Sept. 1985), 341–370.

149

[35] DEPARTMENT OF DEFENSE. DoD 5200.28-STD: Department of
defense (DoD) Trusted Computer System Evaluation Criteria
(TCSEC), 1985.

[36] DIFFIE, W. The first ten years of public key cryptography. In
Simmons [119], ch. 3, pp. 135–175. ISBN: 0-87942-277-7.

[37] DIFFIE, W., AND HELLMANN, M. E. New Directions in Cryptog-
raphy. IEEE Transactions on Information Theory IT-22, 6 (Nov.
1976), 644–654.

[38] DIFFIE, W., VAN OORSCHOT, P., AND WEINER, M. J. Authen-
tication and authenticated key exchanges. In Designs, Codes
and Cryptography (1992), vol. 2, Kluwer Academic Publishers,
pp. 107–125.

[39] DILLEMA, F. W., AND TAGE STABELL-KULØ. The Pesto storage
architecture. Work in Progress session at Middleware 2001, Nov.
2001.

[40] DOLEV, D., AND YAO, A. C. On the security of public key pro-
tocols. IEEE Transactions on Information Theory IT-29, 2 (Mar.
1983), 198–208.

[41] DREIFUS, H., AND MONK, T. Smart Cards – A Guide to Building
and Managing Smart Card Applications. IEEE Computer Press,
1997. ISBN 0-471-15748-1.

[42] DURGIN, N., LINCOLN, P., MITCHELL, J., AND SCEDRO, A. Un-
devidability of bounded security protocols. In Proceedings of
the Workshop on Formal Methods and Security Protocols (Trento,
Italy, July 1999), N. Heintze and E. Clark, Eds.

[43] ELLISON, C. SPKI requirements. RFC 2692, The Internet Society,
Sept. 1999.

[44] ELLISON, C. M., FRANTZ, B., LAMPSON, B., RIVEST, R.,
THOMAS, B., AND YLONEN, T. SPKI certificate theory. Rfc, The
Internet Society, Sept. 1999.

[45] FALLMYR, T., HARTVIGSEN, G., AND STABELL-KULØ, T. Support-
ing Mobile Users in a Variable Connected Distributed System:
the PASTA Approach. Presented at NIK’95, Nov. 1995.

150 Bibliography

[46] FALLMYR, T., AND STABELL-KULØ. QoS applied to security in
mobile computing. Workshop on Mobility and Network Aware
Computing, Zürich, Switzerland, Sept. 1997. Held in conjunc-
tion with the Sixth European Software Engineering Conference
and Fifth ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering. No proceedings. Names of authors in alfabetic
order.

[47] FLUHRER, S., MANTIN, I., AND SHAMIR, A. Weaknesses in the
key scheduling algorithm of RC4. Eighth Annual Workshop on
Selected Areas in Cryptography, Aug. 2001.

[48] FROOMKIN, A. M. The essintial role of trusted third parties in
electronic commerce. Oregon Law Review 75, 1 (1996), 49–115.

[49] GAREY, M. R., AND JOHNSON, D. S. Computers and intractability.
A guide to NP-completeness. W. H. Freeman and Company, 1979.
ISBN 0-7167-1044-7.

[50] GARRETT, P. B. Making, breaking codes; an introductino to cryp-
tology. Prentice-Hall, 2001. ISBN: 0-13-030369-0.

[51] GIFFORD, D. K. Weighted voting for replicated data. In Proceed-
ings of 7th Symposium on Operating Systems Principles (Pacific
Grove, California, Dec. 1979), ACM Press, pp. 150–62.

[52] GOBIOFF, H., SMITH, S., TYGAR, J. D., AND YEE, B. Smart Cards
in Hostile Environments. In Proceedings of the Second USENIX
Workshop on Electronic Commerce (Oakland, CA, Nov. 1996).

[53] GOLDSCHLAG, D., REED, M., AND SYVERSON, P. Onion routing.
Communication of the ACM 42, 2 (Feb. 1999), 39–41.

[54] GONG, L. A note on redundancy in encrypted messages. ACM
Computer Communication Review 20, 5 (Oct. 1990), 18–22.

[55] GONG, L. A Security Risk of Depending on Synchronized Clocks.
ACM Operating Systems Review (Jan. 1992).

[56] GONG, L. Increasing availability and security of an authentica-
tion service. IEEE Journal on Selected Areas in Communications
11, 5 (June 1993), 657–662.

151

[57] GONG, L., LOMAS, M. A., NEEDHAM, R. M., AND SALTZER, J. H.
Protecting Poorly Chosen Secrets from Guessing Attacks. IEEE
Journal on Selected Areas in Communications 11, 5 (June 1993),
648–656.

[58] GONG, L., NEEDHAM, R., AND YAHALOM, R. Reasoning about
Belief in Cryptographic Protocols. In Proceedings of the IEEE 1990
Symposium on Security and Privacy (Oakland, California, May
1990), pp. 234–248.

[59] GOSCINSKI, A. Distributed Operating Systems, The Logical Design.
Addison-Wesley, 1991.

[60] GRITZALIS, S., NIKITAKOS, N., AND GEORGIADIS, P. Formal
methods for the analysis and design of cryptographic protocols:
A state-of-the-art review. In Proceedings of the IFIP Working
Conference on Communications and Multimedia Securit (1997),
vol. 3, pp. 119–132.

[61] GUILLOU, L. C., UGON, M., AND QUISQUATER, J.-J. The smart
card. A standardized security device dedicated to public cryptol-
ogy. In Simmons [119], ch. 12.

[62] GUNTHER, C. An identity-based key-exchange protocol. In
Proceedings of Advances in Cryptology—Eurocrypt’89 (1989),
vol. 434 of Lecture Notes in Computer Science, Springer Verlag,
pp. 29–37.

[63] HEIDEMANN, J. S., PAGE, T. W., GUY, R. G., AND POP EK, G. J.
Primarily disconnected operation: Experience with Ficus. In Pro-
ceedings of the Second Workshop on the Management of Replicated
Data (November 1992).

[64] HEINTZE, N., AND TYGAR, J. D. A model for secure protocols
and their composition. IEEE Transactions on Software Engineer-
ing 22, 1 (Jan. 1996), 16–30. Special section from 1994 IEEE
Symposium on Security and Privacy.

[65] HELME, A. A System for Secure User-controlled Eletronic Trans-
actions. PhD thesis, Informatica, Universiteit van Twente, En-
schede, the Netherlands, Aug. 1997.

152 Bibliography

[66] HELME, A., AND STABELL-KULØ, T. Off-Line delegation in a File
Repository. In 1996 DIMACS WorkShop on Trust Management in
Networks (Rutgers University, Sept. 1996). Work presented at
workshop, but no proceedings. Names of authors are in alfabetic
order.

[67] HELME, A., AND STABELL-KULØ, T. Security Functions for a
File Repository. Memoranda Informatica 96–17, University of
Twente, Enschede, The Netherlands, Nov. 1996. Names of au-
thors are in alabetic order.

[68] HELME, A., AND STABELL-KULØ, T. Security Functions for a File
Repository. ACM Operating Systems Review 31, 2 (Apr. 1997),
3–8. Names of authors are in alabetic order.

[69] HELME, A., AND STABELL-KULØ, T. Offline Delegation. In Pro-
ceedings of the 8th USENIX Security Symposium (Washington,
D.C., Aug. 1999), The USENIX Association, pp. 25–33. ISBN 1-
880446-28-6.

[70] HONEYMAN, P., AND ITOI, N. Smartcard integration with Ker-
beros V5. In Proceedings of the Usenix workshop on smartcard
technolog (Chicago, IL, USA, May 1999).

[71] HOWELL, J., AND KOTZ, D. End-to-end authorization. In Pro-
ceedings of the Fourth Symposium on Operating Systems Design
and Implementation (OSDI 2000) (Oct. 2000), pp. 151–164.

[72] INTEL CORPORATION. Intel 82802AB/AC Firmware hub, Nov.
2000. Document Number: 290658.

[73] INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO),
TECHNICAL COMMITTEE / SUBCOMMITTEE: JTC 1/SC 17 (IDEN-
TIFICATION CARDS AND RELATED DEVICES). ISO/IEC 7816: Iden-
tification cards – Integrated circuit(s) cards with contacts. In-
ternational Organization for Standardization (ISO), 1 rue de
Varembé, Case postale 56, CH-1211 Genève 20, Switzerland,
1998.

[74] JOSEPH, A. D., TAUBER, J. A., AND KAASHOEK, M. F. Mobile
computing with the Rover toolkit. IEEE Transactions on Comput-
ers: Special issue on Mobile Computing (Mar. 1997), 337–352.

153

[75] KAHN, D. The Code-Breakers: The story of secret writing. Macmil-
lan Publishing Company, New York, USA, 1967.

[76] KELSEY, J., SCHNEIER, B., AND WAGNER, D. Protocol interaction
and the chosen protocol attack. In Proceedings of the Interna-
tional Workshop on Security Protocols (Apr. 1996), Lecture Notes
in Computer Science, Springer Verlag, pp. 91–104.

[77] KISTLER, J. J. Disconnected operations in a distributed file system,
vol. 1002 of Lecture Notes in Computer Science. Springer Verlag,
1996.

[78] KISTLER, J. J., AND SATYANARAYANAN, M. Disconnected oper-
ation in the Coda file system. ACM Transactions on Computer
Systems 10, 1 (Feb. 1992), 3–25. See also [77].

[79] KOHL, J., AND NEUMAN, C. The Kerberos network authentica-
tion service (v5). RFC 1510, The Internet Society, Sept. 1993.

[80] KOHNFELDER, L. M. Towards a practical public-key cryptosys-
tem. Master’s thesis, MIT Laboratory for Computer Science, May
1978.

[81] KUBIATOWICZ, J., BINDEL, D., CHEN, Y., EATON, P., GEELS, D.,
GUMMADI, R., RHEA, S., WEATHERSPOON, H., WEIMER, W.,
WELLS, C., AND ZHAO, B. OceanStore: An Architecture for
Global-scale Persistent Storage. In Proceedings of ACM ASPLOS
(Nov. 2000), ACM.

[82] LAI, X., AND MASSEY, J. L. A proposal for a new block encryption
standard. In Proceedings of Advances in Cryptology—Eurocrypt’90
(1991), I. Damgård, Ed., vol. 473 of Lecture Notes in Computer
Science, Springer Verlag, pp. 389–404.

[83] LAMPORT, L. Time, Clocks, and the Ordering of Events in a Dis-
tributed System. Communications of the ACM 21, 7 (July 1978),
558–565.

[84] LAMPORT, L. On interprocess communication, part I and II. Dis-
tributed Computing 1, 1 (1985).

154 Bibliography

[85] LAMPSON, B., ABADI, M., BURROWS, M., AND WOBBER, E. Au-
thentication in distribued systems: theory and practice. ACM
Transactions on Computer Systems 10, 4 (Nov. 1992), 265–310.

[86] LEVESON, N. G. SAFEWARE: System Safety and Computers.
Addison-Wesley, 1995.

[87] LIEBL, A. Authentication in Distributed Systems: A Bibliography.
ACM Operating Systems Review 27, 4 (Oct. 1993), 31–41.

[88] LINN, J. Privacy enhancement for internet electronic mail: Part
I: Message encryption and authentication procedures. RFC 1421,
The Internet Society, Feb. 1993.

[89] MAZIÈRES, D., KAMINSKY, M., KAASHOEK, M. F., AND WITCHEL,
E. Separating key management from file system security. In Pro-
ceedings of the 17th ACM Symposium on Operating System Princi-
ples (Dec. 1999), pp. 124–139. Operating Systems Review, vol-
ume 34, no. 5.

[90] MCKUSICK, M. K., JOY, W. N., LEFFLER, S. J., AND FABRY, R. S.
A fast file system for UNIX. ACM Transactions on Computer Sys-
tems 2, 3 (1984), 181–197.

[91] MEADOWS, C. Formal Verification of Cryptographic Protocols:
A Survey. In Proceedings of Advances in Cryptology—Asiacrypt’9
(1995), vol. 917 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 133–150.

[92] MENEZES, A. J. Elliptic Curve Public Key Cryptosystems. Kluwer
Academic Publishers, 1993. ISBN: 0-7923-9368-6.

[93] MENEZES, A. J., VAN OORSCHOT, P. C., AND VANSTONE, S. A.
Handbook of applied cryptography. The CRC Press series on dis-
crete mathematics and its applications. CRC Press, 1997. ISBN
0-8493-8523-7.

[94] MERKLE, R. C. Secure communication over insecure channels.
Communications of the ACM 21, 4 (Apr. 1978), 294–299.

[95] MYRVANG, P. H. Obol: a light-weight protocol description lan-
guage. Submitted for publication, Apr. 2002.

155

[96] MYRVANG, P. H., AND STABELL-KULØ, T. The PASTA doorkeeper.
NIK’99, pp 15-17, Nov. 1999.

[97] NECHVATAL, J. Public Key Cryptography. In Simmons [119],
ch. 4, pp. 177–288. ISBN: 0-87942-277-7.

[98] NEEDHAM, R. M. Names. In Distributed Systems, S. J. Mullender,
Ed. ACM Press, 1989, ch. 5, pp. 89–102.

[99] NEEDHAM, R. M., AND SCHROEDER, M. D. Using Encryption for
Authentication in Large Networks of Computers. Communica-
tions of the ACM 21, 12 (Dec. 1978), 993–998.

[100] NESSET, D. M. A critique of the Burrows, Abadi and Needham
logic. ACM Operating System Review 24, 2 (Apr. 1990), 35–38.

[101] NEUMANN, P. G. Computer-Related Risks. ACM Press, 1995.

[102] NEUMANN, P. G. Security and privacy issues in computer and
communication systems. In The computer science and engineer-
ing handbook, A. B. Tucker Jr., Ed. CRC Press, 1996, ch. 89,
pp. 1910–1913.

[103] NOBLE, B. D., SATYANARAYANAN, M., NARAYANAN, D., TILTON,
J. E., FLINN, J., AND WALKER, K. R. Agile application-aware
adaption for mobility. ACM SIGOPS Operating Systems Review
31, 5 (Dec. 1997), 276–287. in: SIGOPS ’97. Proceedings of
the sixteenth ACM symposium on Operating systems principles,
pages 264-275.

[104] RANKL, W., AND EFFING, W. Smart Card Handbook, 2 ed. John
Wiley & Sons, 2000. ISBN 0-471-98875-8.

[105] REED, D. P., SALTZER, J. H., AND CLARK, D. D. Active network-
ing and end-to-end arguments. IEEE Network 12, 3 (May 1998),
69–71.

[106] RIVEST, R. L. Cryptography. In Handbook of Theoretical Com-
puter Science, J. van Leeuwen, Ed., vol. A. Elsevier Science Pub-
lishers B.V., P.O. Box 211, 1000 AE Amsterdam, The Netherlands,
1990, ch. 13, pp. 717–755.

156 Bibliography

[107] RIVEST, R. L. The MD5 message-digest algorithm. RFC 1321,
The Internet Society, Apr. 1992.

[108] RIVEST, R. L., AND LAMPSON, B. SDSI—A Simple Distributed
Security Infrastructure, 1996. Working document (Version 1.1).

[109] RIVEST, R. L., SHAMIR, A., AND ADLEMAN, L. A Method for Ob-
taining Digital Signatures and Public-key Cryptosystems. Com-
munications of the ACM 21, 2 (Feb. 1978), 120–126.

[110] ROE, M. Cryptography and evidence. PhD thesis, Clare College,
University of Cambridge, UK, 1998.

[111] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and im-
plementation of a log-structured file system. In Proceedings of
the 13th Symposium on Operating System Principles (Oct. 1991),
pp. 1–15.

[112] SAFAVI-NAINI, R., MATHURIA, A. M., AND NICKOLAS, P. R.
Some remarks on the logic of Gong, Needham and Yahalom.
In Proceedings of the International Computer Symposium (NCTU,
Hsinchu, Taiwan, Dec. 1994), vol. 1, pp. 303–308.

[113] SALTZER, J. H., REED, D. P., AND CLARK, D. D. End-to-end argu-
ments in system design. ACM Transactions on Computer Systems
2, 4 (Nov. 1984), 277–288.

[114] SANDBERG, R., GOLDBERG, D., KLEIMAN, S., WALSH, D., AND

LYON, B. Design and implementation of the Sun Network
Filesystem. In USENIX Association summer conference proceed-
ings (Portland, Oregon, USA, June 1985), USENIX Association,
pp. 119–130.

[115] SCHNEIER, B. Applied cryptography. Protocols, Algorithms, and
source code in C, second ed. John Wiley & Sons, Inc., 1996. ISBN
0-471-12845-7.

[116] SCHNEIER, B., AND SHOSTACK, A. Breaking up is hard to do:
Modeling security threats for smart cards. In Proceedings of
the USENIX workshop on smartcard technology (Chicago, Illinois,
USA, May 1999), USENIX Association, pp. 175–185.

157

[117] SHANNON, C. E. Communication theory of secrecy systems. Bell
System Technical Journal 28 (Oct. 1949), 656–715.

[118] SHIREY, R. Internet security glossary. RFC 2828, The Internet
Society, May 2000.

[119] SIMMONS, G. J., Ed. Contemporary Cryptology, The Science of
Information Integrity. IEEE Press, 1992. ISBN: 0-87942-277-7.

[120] SIMMONS, G. J. Cryptanalysis and protocol failures. Communi-
cations of the ACM 37, 11 (1994), 56–65.

[121] STABELL-KULØ, T. Security and log structured file systems. ACM
Operating Systems Review 31, 2 (Apr. 1997), 9–10.

[122] STABELL-KULØ, T. Putting smartcards to use in a user-sentric
system. In Proceedings of the 2nd ACM Symposium on Hand-
held, Ubiquitous Computing (Sept. 2000), P. Thomas and H. W.
Gellersen, Eds., vol. 1927 of Lecture Notes in Computer Science,
Springer Verlag, pp. 200–210.

[123] STABELL-KULØ, T., ARILD, R., AND MYRVANG, P. H. Providing
authentication to messages signed with a smart card in hostile
environment. In Proceedings of the USENIX workshop on smart-
card technology (Chicago, Illinois, USA, May 1999), USENIX As-
sociation, pp. 93–99.

[124] STABELL-KULØ, T., DILLEMA, F., AND FALLMYR, T. The open-end
argument for private computing. In Proceedings of the ACM First
Symposium on Handheld, Ubiquitous Computing (Oct. 1999), H.-
W. Gellersen, Ed., vol. 1707 of Lecture Notes in Computer Science,
Springer Verlag, pp. 124–136.

[125] STABELL-KULØ, T., AND FALLMYR, T. User controlled sharing in
a variable connected distributed system. In Proceedings of the
seventh IEEE international Workshop on Enabeling Technologies:
Infrastructure for Collaborative Enteprises (WETICE’98) (Stan-
ford, California, USA, June 17–19 1998), IEEE Computer Society
Press, pp. 250–255.

[126] STABELL-KULØ, T., HELME, A., AND DINI, G. Detecting key-
dependencies. In Proceedings of the Third Australasian Confer-
ence on Information Security and Privacy (ACISP’98) (Brisbane,

158 Bibliography

Australia, July 1998), C. Boyd and E. Dawson, Eds., vol. 1438 of
Lecture Notes in Computer Science, Springer Verlag, pp. 356–366.

[127] STEINER, J. G., NEUMANN, B. G., AND SCHILLER, J. I. Ker-
beros: An authentication system for open network systems. In
Proceedings of the Winter 1988 Usenix Conference (Feb. 1988),
pp. 191–201.

[128] STINSON, D. R. Cryptography – Theory and practice. The CRC
Press series on discrete mathematics and its applications. CRC
Press, 1995. ISBN 0-8493-8521-0.

[129] STUBBLEFIELD, A., IOANNIDIS, J., AND RUBIN, A. D. Using the
Fluhrer, Mantin, and Shamir attack to break WEP. Technical
Report TD-4ZCPZZ, AT&T Laboratories, Aug. 2001.

[130] SUN MICROSYSTEMS, INC. Java Card 2.0 Language Subset and
Virtual Machine Specification. Revision 1.0 Final, Oct. 1997.

[131] SYVERSON, P., AND CERVESATO, I. The logic of authentication
protocols. In Proceedings of 9th International Conference on Co-
operative Information Systems (Trento, Italy, Sept. 2001), C. Ba-
tini, F. Giunchiglia, P. Giorgini, and M. Mecella, Eds., vol. 2172
of Lecture Notes in Computer Science, Springer Verlag.

[132] SYVERSON, P. F. The use of logic in the analysis of cryptograpgic
protocols. In Proceedings of the 1991 IEEE Computer Society Sym-
posium on Research in Security and Privacy (Los Alamitos, Cali-
fornia, USA, 1991), IEEE Computer Society Press, pp. 156–170.
A corrected discussion of many of the issues in this paper ap-
peared in [133].

[133] SYVERSON, P. F. Knowledge, belief, and semantics in the analysis
of cryptographic protocols. Journal of Computer Security 1, 3
(1992), 317–334.

[134] SYVERSON, P. F., AND STUBBELINE, S. G. Group principals and
the formalization of anonymity. In Proceedings of the World
Congress on Formal Methods in the Development of Computing
Systems (Sept. 1999), J. M. Wing, J. Woodcock, and J. Davies,
Eds., vol. 1708 of Lecture Notes in Computer Science, Springer
Verlag, pp. 314–333.

159

[135] SYVERSON, P. F., AND VAN OORSCHOT, P. C. On unifying some
cryptographic protocol logics. In Proceedings of the 1994 IEEE
Computer Society Symposium on Research in Security and Privacy
(Los Alamitos, California, USA, May 1994), IEEE Computer So-
ciety Press, pp. 14–28.

[136] SYVERSON, P. F., AND VAN OORSCHOT, P. C. A unified crypto-
graphic protocol logic. CHACS Report 5540-227, Naval Research
Laboratory, Washington, USA, 1996. Parts of this paper appeared
in prelimary form in [140] and [135].

[137] TERRY, D. B., THEIMER, M. M., PETERSEN, K., DEMERS, A. J.,
SPREITZER, M. J., AND HAUSER, C. H. Managing Updates in a
Weakly Connected Replicated Storage System. In Proceedings of
the 15th ACM Symposium on Operating Systems Principles (Cop-
per Mountain Resort, Colorado, December 3–6 1995), pp. 172–
183.

[138] TOUCH, J. Report on MD5 performance. RFC 1810, The Internet
Society, June 1995.

[139] VAN EMDE BOAS, P. Machine models and simulations. In Hand-
book of Theoretical Computer Science, J. van Leeuwen, Ed., vol. A:
Algorithms and Complexity. The MIT Press, 1990, ch. 1, pp. 1–
66. ISBN: 0–262–22038–5.

[140] VAN OORSCHOT, P. C. Extending cryptograpic logics of beliefs to
key agreement protocols (extended abstract). In Proceedings of
the First ACM Conference on Computer and Communication Secu-
rity (Nov. 1993), pp. 232–243.

[141] VAN STEEN, M., HOMBURG, P., AND TANENBAUM, A. Globe: A
Wide-Area Distributed System. In IEEE Concurrency (Jan. 1996),
pp. 70–78.

[142] WEISER, M. The Computer for the 21st Century. Scientific Amer-
ican (Sept. 1991), 66–75.

[143] WESTIN, A. Privacy and freedom. London: Bodley Head, New
York, USA, 1970. ISBN 0-370-01325-5.

160 Bibliography

[144] WILKES, M. V. Time-sharing computer systems. American Elsevier,
New York, USA, 1972.

[145] WIN, E. D., BOSSELAERS, A., VANDENBERGHE, S., GERSEM,
P. D., AND VANDEWALLE, J. A Fast Software Implementation
for Arithmetic Operations in GF(2n). In Proceedings of Advances
in Cryptology—Asiacrypt’91, K. Kim and T. Matsumoto, Eds.,
vol. 1163 of Lecture Notes in Computer Science. Springer-Verlag,
Nov. 1996, pp. 65–76.

[146] WOBBER, E., ABADI, M., BURROWS, M., AND LAMPSON, B. Au-
thentication in the Taos operating system. ACM Transactions on
Computer Systems 12, 1 (Feb. 1994), 3–32.

[147] YAN, J., EARLY, S., AND ANDERSON, R. The XenoService - A Dis-
tributed Defeat for Distributed Denial of Service. In ISW 2000,
IEEE computer society, Boston, USA (Oct. 2000).

[148] YEE, B. S., AND TYGAR, D. Secure Coprocessors in Electronic
Commerce Applications. In Proceedings of The First USENIX
Workshop on Electronic Commerce (New York, July 1995).

[149] ZIMMERMANN, P. The official PGP user’s guide. The MIT Press,
1995. ISBN 0-262-74017-6.

Appendix A

A specialized One-Time Pad (OTP) was described in Section 8.1.2. The
OTP has six rows:

Letter: The alphabet available to the user

Subst: The substitution table; each character from the alphabet is re-
placed by the corresponding number from the substitution table.

X: In this row the user writes his message

OTP: The number representing each character is added (modulo 40)
to the corresponding element in the One Time Pad.

Z: The result.

Y: A secret number

On the following page, two OPTs are shown; one of them is filled out
with the string “GIVE TAGE@ACM.ORG $500.” to show how one would
go about to send an encrypted message.

161

162 Appendix A

Letter
0

1
2

3
4

5
6

7
8

9
A

B
C

D
E

F
G

H
I

J
K

L
M

N
O

P
Q

R
S

T
U

V
W

X
Y

Z

.
$

@

Su
bst

0
5
2
7
1
3
3
2

0
3
2
1
1
6
2
2
0
0
0
8
2
6

0
6
0
4
0
7
1
8
3
9
3
0

1
5
1
9
0
9
3
7
2
3
2
4
3
8

1
7
2
5
1
4
2
0
1
0
0
2
3
1

3
3
3
4
3
5
1
2
0
1
3
6
2
8
1
1
2
9

XO
T

P
3
1
2
5
0
8
3
2

0
2
1
6
3
8
1
8
1
9
1
3
1
7

0
1
3
7
3
8
2
0
2
4
0
0

3
3
1
0
0
1
2
4
3
4
3
7
1
1

0
1
0
5
0
8
1
4
1
5
2
9
0
3

0
3
1
8
3
9
3
0
0
5
1
0
2
2
2
4
1
4

ZY
0
x
8
b
d
e
9
4
b
6
3
0
f
1
5
0
4
b

Letter
0

1
2

3
4

5
6

7
8

9
A

B
C

D
E

F
G

H
I

J
K

L
M

N
O

P
Q

R
S

T
U

V
W

X
Y

Z

.
$

@

Su
bst

0
5
2
7
1
3
3
2

0
3
2
1
1
6
2
2
0
0
0
8
2
6

0
6
0
4
0
7
1
8
3
9
3
0
1
5

1
9
0
9
3
7
2
3
2
4
3
8
1
7
2
5
1
4
2
0
1
0
0
2
3
1

3
3
3
4
3
5
1
2
0
1
3
6
2
8

1
1
2
9

X
2

3
G

I
V

E

T
A

G
E

@
A

C
M

.
O

R
G

$

5
0

0
.

O
T

P
3
1
2
5
0
8
3
2

0
2
1
6
3
8
1
8
1
9
1
3
1
7

0
1
3
7
3
8
2
0
2
4
0
0
3
3

1
0
0
1
2
4
3
4
3
7
1
1
0
1
0
5
0
8
1
4
1
5
2
9
0
3

0
3
1
8
3
9
3
0
0
5
1
0
2
2

2
4
1
4

Z
0
4
1
7
3
8
1
1

3
5
3
4
3
4
2
0
0
5
0
3
3
5

3
0
2
3
0
2
0
4
1
2
1
7
1
3

0
0
3
7
3
5
1
5
0
2
1
6
2
9

Y
0
x
8
b
d
e
9
4
b
6
3
0
f
1
5
0
4
b

Figure 9.1: Two One-Time Pads, one of them filled in

Appendix B

For ease of reference we have included the 21 axioms found in the SVO

logic [131], and a few detailed descriptions of semantics. The logic was
first described in [136], but corrected in [131]; we use the latter.

Axioms

The axioms are referred to as Axn in the text. Modus Ponens and Ne-
cessitation is referred to as MP and NEC, respectively

Modus Ponens: From ϕ and ϕ→ ψ infer ψ.
Necessitation: From ` ϕ infer ` P believes ϕ.

Belief Axioms

1 P believes ϕ∧ P believes (ϕ→ ψ)→ P believes ψ

2 P believes ϕ→ P believes P believes ϕ

3 P believes ϕ→ P believes (P believes ϕ)

4 ¬(P believes ϕ)→ P believes (¬P believes ϕ)

Source Association Axioms

5 (P
K←→ Q∧ R received {XQ}K)→ (Q said X∧Q has K)

6 (PKα(Q,k) ∧ R received X∧ SV(X, k, Y))→ Q said Y

Key Agreement Axioms

7 ((PKα(P, kP)) ∧ (PKβ(Q,kQ)))→ P
F0(kP,kQ)←→ Q

163

164 Appendix B

8 ϕ ≡ ϕ[F0(K,K
′)/F0(K

′, K)]

Receiving Axioms

9 P received (X1, . . . , Xn)→ P received Xi

10 (P received {X}K+ ∧ P has K−)→ P received X

Here K+ and K− are used to abstractly represent cognate keys,
whether for symmetric or assymetric cryptography.

11 P received [X]K → P received X

Poesession Axioms

12 P received X→ P has X

13 P has (X1, . . . , Xn)→ P has Xi

14 P has (X1 ∧ . . . P has ∧ Xn)→ (P has F(X1 ∧ . . .∧ Xn))

The function F is meta-notation for any function that is effectively
a bijection (e.g., collsion free hashes) and such that F+ and F− is
computable in practicee by P.

Comprehension Axiom

15 P believes (P has F(X))→ P believes (P has X)

Saying Axioms

16 P said (X1, . . . , Xn)→ (P said Xi ∧ P has Xi)

17 P says (X1, . . . , Xn)→ (P said (X1, . . . , Xn) ∧ P says Xi)

Freshness Axioms

18 fresh(Xi)→ fresh(X1, . . . , Xn)

19 fresh(X1, . . . , Xn)→ fresh(F(X1, . . . , Xn))

It must be infeasible to compute F without all the Xi.

Jurisdiction and Nonce-Verification Axioms

20 (P controls ϕ∧ P says ϕ)→ ϕ

21 (fresh(X) ∧ P said X)→ P says X

Symmetric Goodness Axiom

22 P
K←→ Q ≡ Q K←→ P

165

Semantics

In Section 8.1.3 we refer to the semantics of SvO; the relevant parts are
shown below.

Freshness

A message is fresh if it has not been part of a message sent prior to
the current epoch. It is sufficient but not necessary for freshness that
a message be unseen prior to the current epoch. A principal might
generate a message earlier and not send it until the epoch begins. Truth
conditions are thus in terms of ’what has been said’ rather than ’what
has been seen’.

(r, t) |= fresh(X)

iff, for all principals P and all times t′ < 0, (r, t′) 6|= P said X.

Saying

(r, t) |= P said X

iff, for some message M, at some time t′ ≤ t in r, P sent M and X is a
said submessage ofM for P at (r, t′). This gives the truth conditions for
P having said X at some point in the past. We also characterize what
it means for P to have said X in the current epoch (typically taken to
mean since the initial point of the current protocol run).

(r, t) |= P says X

iff, for some message M, at some time 0 ≤ t′ ≤ t in r, P sent M and X
is a said submessage of M for P at (r, t′).

